NIBBLING AT ASSEMBLY LANGUAGE

Part XIV:

MACRO MAGIC

Macros are often misunderstood, and almost
alwavs underutilized, but they can make
assembly language programming much casicer.

Scott shows vou how!

ssembly language outperforms

high-level languages (like BASIC

and Pascal) in speed of execution
and flexibility of operation, but high-level
languages outperform assembly language in
efficiency of programming and readability
of program code. If only you could magi-
cally combine the speed of assembly lan-
guage programs with the readability of
high-level language programs. . .. And you
can. with macros

MACROS

Overview
Macros are single-word or single-line
commands that can replace several lines of
assembly source code. For example, @ com-
mon operation in assembly language pro-
grams is storing a two-byte (16-bit) value
from one variable into another variahle:
DA VARI
STA VAR2
LDA VAR1+1
STA VAR2+1
This 1s equivalent to VAR2 VARI in
BASIC or VAR2 := VARI in Pascal. In
this example, one line of high-level-language
code equals four lines of assembly code.
However, 1f you have a macro assembler
(The MicroSPARC Assembler, Merlin,
ORCA/M, or S-C Macro Asscmbler), you

can define a simple macro so that the single
line of code:

STOR2 VAR1 VARZ

m your assembly source file equals the origi-
nal four lines

Unfortunately. macro definition and usage
differ from one assembler to another. To
define STOR2 with The MicroSPARC As-
sembler, you would include the following
code in your source file:

STOR2 MAC
LDA A
STA B
LDA A+l
STA B+l
EMC

where the pscudo-opcode (or assembler
directive) MAC indicates the start of the
definition of the STOR2 macro, :A and :B
arc paramcters passcd 1o the macro, and the
pscudo-opcode EMC indicates the end of the
macro definition. With the Merlin Pro as-

FIGURE 1: APLPRINT Menu

APLPRINT %
PRINT APPLESOFT PGM

OUTPUT PORT - 1

VIDEO PORT: 2

L INES/PAGE 60

LINES SKIPPED 6
CHARACTERS/LINE: 72
SPACED [NDENTED: 3
CONTINUE TAB: 6
EXIT APLPRINT

sembler, you would define the same macro
as follows:

STOR2 MAC
LDA |1
STA]2
LDA]1+

STA]2+
EOM

With ORCA/M the definition is:

MACRO
&LAB STORZ &NUML , &NUM2
LDA &NUM1
STA &NUM2
LDA ENUMI +1
STA &NUM2+1
MEND

And with the S-C Macro Assembler the defi-
nition is:

MA STORZ2
LDA 11
STA]2
LDA 1+l
STA [2+1

EM

You can sce that all the assemblers are
slightly different. Carcfully read the Macros
section in your particular assembler user's
manual to learn how macros are defined and
used with yvour system.

Once you define the macro. you can use
it just like any other assembler mnemonic.
For example. a line of code in APLPRINT
(an example program discussed later) looks
like this:

STOR2 TXTTAB, TXTPTR

The assembler translates (or expands) this
linc into:

LDA TXTTAB

STA TXTPTR

LDA TXTTAB+1

LDA TXTPTR+1

The program uses STOR2 just like a normal

mnemonic opcode, except it represents more

than one machine language command.
But macros can perform even more

magic. With The MicroSPARC Assembler

and others, you can use directives for con-

ditional assembly, local labels, and

parameter passing to create a wide variety

of useful and powerful macros.

Benefits
Macros help you to:

1. Save ryping. Unless you are a whiz-bang
typist (and what programmer is?) you
will appreciate this time-saving feature.
Most assembler errors are in fact caused
by typos, not actual coding errors. Once
you define the macro, you can type just
a few characters to represent many lines
of code.

2. Remember important code. For example.
how do you execute a two-byte com-

Mcms are single-

word or sindle-line
commands that can
replace several lines of
assembly source code.

parison in 65C02 assembly language?
The standard algorithm is:

LDA NuMml

CMP NUM2

LDA NUMI+1

SBC NUMZ2+1

followed by BCC (where the branch is
taken if NUM1 < NUM2) or BCS
(where the branch is taken if NUM] >
= NUM2). Even though it’s short, the
logic of this code is not easy to remem-
ber. But the macro CMP2, defined as:

CMP2 MAC
LDA A
CMP :B
LDA A+l
SBC :B+1
EMC

is casy to remember. Once it's defined,
the macro helps avert future crrors in
writing the two-byte comparison.

3. Simplify programming. A library of

macros will greatly simplify your pro-
gramming. For example, one of the
hardest pieces of code for the beginning
assembly language programmer 1s the
seemingly simple PRINT command. The
code:

TABLE 1: Macro Descriptions

Macros

STOR2

CMP2

INC2

DEC2

SETADR

HOME
INVERSE, NORMAL. FLASH

PR

DECPRNT
HEXPRNT

BELL
CRETURN
TABHV

PRINT

DA

DECIN

BLT

BGE

ZERO

Functions

Two-byte store. The syntax STOR2 NUMI.NUM?2 (where
NUMI and NUM2 are 16-bit integers) is the equivalent of
NUM2 = NUMI in Applesoft BASIC.

Two-byte compare. The syntax CMP2 NUMI NUM2 com-
pares the values of the 16-bit numbers NUMI and NUM2.
Use BCC or BCS (or alternatively, the macros BLT or
BGE: see below) immediately following CMP2.

Two-byte increment. The syntax INC2 NUM increments the
16-bit number NUM.

Two-byte decrement. The syntax DEC2 NUM decrements
the 16-bit number NUM.

Scts the address of a label to a two-byte variable. The syn-
tax SETADR LABEL_LLBLPTR sets the address of LABEL
1o the vanable (pointer) LBLPTR

Clears the text screen and moves the cursor to the upper left
corner. (This has the same meaning as in Applesoft BASIC.)
Function the same as the corresponding Applesoft BASIC
commands.

Function the same as the Applesoft PR# command, for ex-
ample, to turn on a printer (PR#1) or access the R0-column
card (PR#3). Use the syntax PR#1 or PR PRNTPRT.

Prints the decimal value of a two-byte vanable. Use the syn-
tax DECPRNT NUM.

Prints the hexadecimal value of a two-byte variable. Use the
syntax HEXPRNT NUM.

Sounds the built-in Apple beeper.

Exccutes a carriage return,

Tabs the cursor 1o the specified horizontal and vertical posi-
tions. The syntax TABHV 10.5 moves the cursor to HTAB
10, VTAB 5. This macro requires the subroutine GOTOXY.
Prints a string of characters. The syntax PRINT *“Hello,
world!™ prints the string to the current output device. This
macro requires the subroutine MSGOUT.

Defines an address (or pointer) and provides two bytes of
memory, The syntax DA LABEL is the same as DFC
LABEL.LABEL/.

Inputs a decimal number. The syntax DECIN NUM makes
the computer wait for the user to type a decimal number
from the keyboard and then assigns the input value to NUM.
The weakness of this macro is that any input error will
producc the message ““?SYNTAX ERROR' and cxit the as-
scmbly language program. You should not usc this macro
except in simple program utilities (like APLPRINT).
Functions exactly the same as BCC, but its meaning is cas-
icr to remember: BLT means ““branch if less than.™" After a
comparison (CMP, CPY, CPX, or the macro CMP2), the
syntax BLT LABEL causes a branch to the specified label il
the value in the 65C02 register is less than the value speci-
fied in the aoperand of the comparison instruction.

Functions exactly the saime as BCS. but its meaning s easier
to remember: BGE means “*branch if greater than or
equal,”” After a comparison, the syntax BGE causes a
branch to the specified label if the value in the 65C02
register is greater than or equal to the value specified in the
operand of the comparison instruction.

Zceroes the valucs of the list of onc-byte variables. Use the
syntax ZERO NUMI, NUM2, NUM3 (with a space be-
tween each of the variables, and with no comment on the
same linej. It uses the complex, recursive macro STAPARM
for storing data in a list of parameters. (Study the Macros
section of The Assembler user's manual to understand the
various pseudo-opcodes included in this macro.)

PRINT "1 love Nibble"

can't be done in assembly language —
unless you use macros. The Applesoft
code:

INPUT A

is casy in BASIC but less straightfor-
ward in assembly language — until you
apply macros. You'll see how to define
these macros later.

Streamline listings. Macros significantly
decrease the number of source code
lines. saving disk space and making your
programs more manageable.

Make code more readable. Macros help
in program readability — an important

feature of well designed programs — by
allowing more meaningful mnemonics,
with names that express the program-
ming function. For example. the macros
INVERSE, NORMAL. PRINT. and
HOME are easy to remember and casy
1o read: any Applesoft BASIC program-
mer immediately knows what they mean.
Other macros are also easy to remember
and read once you learn them: for ex-
ample, TABHV tabs the cursor to a
horizontal and vertical location on the
screen, DECPRNT prints a decimal
number, and SETADR stores an address
in a memory location. You will also see
these macros later.

TABLE 2: APLPRINT Menu Items

Menu Items

PRINT APPLESOFT PGM
OUTPUT PORT

VIDEO PORT

LINES/PAGE

LINES SKIPPED

CHARACTERS/LINE

SPACES INDENTED

CONTINUE TAB

EXIT APLPRINT

Functions

Prints the formatted program listing.

This is usually set to 1, the typical port 1o which a printer is
connected. Press Return when the highlight bar is at this item
to change the value of the output port. For example, you may
wish 1o oulput the listing to port 3 (the 80-column card) before
sending it to the printer to sce what the format looks like.
This is the port to which the system returns after printing the
listing. This is usually set to port 0 (40-column screen) or port
3 (R0-column screen),

Lets you modify the number of printed lincs on a page.
Standard paper is 11 inches long, and most printers output 6
lines per inch, which means a maximum of 66 lines per page.
If you want page breaks between pages or margins at the top
and bottom of the page. then the actual number of printed lines
should be less than 66. The default is 60 lines per page. If you
initialize your printer (prior to running APLPRINT) to 8 lines
per inch, you can set the LINES/PAGE as high as 88.

This is the number of lines skipped between the bottom of one
page and the top of another. If you change the LINES/PAGE
to 54 (which gives a l-inch margin at the top and botiom of
cuch page). you should set the LINES SKIPPED to 12. so that
the sum of the two always equals 66 (for standard 11-inch
paper printed at 6 lines per inch).

This is the approximate number of characters (including indent
spaces) printed on each line of output. It's not exact because
APLPRINT won't split @ word in the middle, but continues
printing until it finds a space, period, comma, colon or dash,
after which APLPRINT outputs a carriage return. For this
reason, you should never set the CHARACTERS/LINE to the
maximum platen width of your printer.

[f you imtialize your printer {prior to running APLPRINT) to
12, 15. or 17 characters per inch, you can set the
CHARACTERS/LINE to about 90, 120, or 130.

This is the number of blank spaces in the left margin of the
printed page.

This is the number of blank spaces indented for continuation
lines (for an Applesoft command line which takes two or more
printed lines). Since APLPRINT automatically night-justifies
line numbers (so they always take five spaces). the
CONTINUE TAB should usually be set to more than 5. The
dcfault is 6.

This exits the APLPRINT program. You can also exit (or be
forced to0) by pressing Control-Reset or by typing an illegal
quantity for a new APLPRINT value. Once the Applesoft
program begins printing (either to a printer or to the video
display). you can pausc the listing by pressing the Space bar,
Pressing the Space bar a second time causes the output to step
through the program one line at a time. Pressing Return
restores continuous output. You can halt the printing and return

to the APLPRINT mcnu by pressing Escape.

Macros versus Subroutines

A macro is similar to a subroutine in that
it represents a set of commands usually used
more than once in a program. But a subrou-
tine, if it contains many lines of code.
reduces the amount of object code (as well
as the amount of source codc) in the pro-
gram. A macro, on the other hand, never
reduces the amount of object code, just the
amount of source code. During assembly,
the macro 1s expanded into multiple lines of
assembly code at every occurrence of the
macro. Therefore, if a certain macro repre-
sents four lines of assembly language code,
the assembler inserts four lines into the pro-
gram everywhere the macro occurs. The
code for a subroutine, on the other hand.
occurs only once in each program.

Mcros can perform

even more magic. You
can use directives for
conditional assembly.
local labels, and
parameter passing (o
create a wide variety
of useful and powertul
macros.

For this reason, macros usually represent
short code which is not amenable to being
included in a subroutine. Macros usually
take the place of 1-6 lines of code; only very
rarely would you define a macro that rep-
resented more than 10 lines of code. If you
examine the macros in this article, you will
see that they would not work as subroutines.

EXAMPLE AND OTHER MACROS

Listing 1 is a source file (in The Micro-
SPARC Assembler format) of common
macros. You will see how to use most of
these macros in the example program
APLPRINT (Listing 2). Table 1 describes
each macro.

The best source of example macros is your
own assembler system. All of the popular
macro assemblers have examples in their
documentation and on their system diskettes.

The ultimate use of macros is Macrosoft,
a BASIC-to-machine language system pub-
lished by MicroSPARC and advertised in
most issues of Nibble. Macrosoft is actually
a complete collection of sophisticated
assembly language macros along with a set
of predefined subroutines used with The
MicroSPARC Assembler. The macros have
names closely corresponding to Applesoft
BASIC commands; DIM, LET. RND,
GOSUB, HOME, TEXT, HGR, etc. There-
fore, BASIC programmers can start writing

machine code almost immediately, with lit-
tle training in assembly language.

Of course, when you rely completely on
published macros without understanding and
using assembly language, you pay a price:
The programs are not fully optimized for
speed or compactness. One approach is to
write code which is not speed or space in-
tensive with the built-in macros. and then
use customized assembly code for the criti-
cal parts of the program.

Whether you write programs in Macro-
soft or not, it’s a rich source of information
for assembly language programs. If you
delve into the source code of Macrosoft's
macro files, you will discover how to code
for HCOLOR, VTAB. DRAW, SQR, and
dozens of other commands in assembly
language.

ENTERING APLPRINT
The program APLPRINT (Listing 2)
demonstrates the power of macros. Its

Mcms help vou

save typing, remember
important codes,
simplify programming,
streamline listings and
make code more

readable.

source code uses most of the macros given
in Listing 1. The function of APLPRINT
15 10 print a formatted listing of an Applesoft
program. It works with any printer.

Before trying to assemble the source code
in Listing 2, you should type in (but not as-
semble) Listing 1 and save the source code
under the base name MACROS, which will
produce the file MACROS.S on disk. This
is a macro fibrary. which you can use
not only with APLPRINT but with any as-
sembly language program you write. (Noic:
APLPRINT does not use all the macros in
Listing 1.) As you become more proficient
with macros, you can add your favorites to
the library (and delete others) to optimize
your programming proficiency.

If you don’t have The MicroSPARC As-
sembler, you should try to define the macros
in the proper format for your system. Check
your user’s manual for the proper way 10
define and use macros with your assembler
system. (I hope I'm beginning to sound like
a broken record: Read your user’s manual,
read your user’s manual, read your user’s
manual)

If you don’t have a macro assembler, but
still want the program APLPRINT, type in
the machine code portion of Listing 2 and
save it with:

BSAVE APLPRINT,A$ 9200,L$3F1

If vou do have The Assembler, type in both
Listing 1 and Listing 2 and then assemble
Listing 2. If you are using Key Perfect,
BLOAD the object file, delete the file on
disk, and BSAVE it using the command
shown above.

Using APLPRINT

With an Applesoft program in memory
and APLPRINT on the disk, type BRUN
APLPRINT. If APLPRINT is already in
memory. just type CALL 37376. You will
see the APLPRINT menu (as shown in
Figure 1). with a highlight bar over the first
menu item. Use the arrow keys to move the
highlight bar up and down the menu. Press
Return to select or change the value of the
highlighted item. Table 2 describes each
menu item.

How APLPRINT Works

The main task of APLPRINT is reading,
translating, and outputting the resident
Applesoft program. This 1s not difficult once
you understand the structure of Applesoft
and the Applesoft LIST routine. The bib-
liography at the end of this article gives
references with this information.

The code in lines 64-153 is similar to the
LIST command (SD6AS), except APL-
PRINT maintains control of the listing for-
mat, putting carriage returns where
APLPRINT wants, not where LIST wants.
Every time APLPRINT sends a character
to the printer, it uses the subroutines
COUNTCHR (lines 289-313) and PAGE-
CHK (lines 277-287). which count the num-
ber of characters per line and the number
of lines per page, and formats the output
accordingly

Macros in APLPRINT

You should carefully go through Listing
2 10 see how APLPRINT uses macros. In
particular, notice the handy use of HOME.
INVERSE. NORMAL, TABHV, and
PRINT in formatting the display screen,
Also, note that TABHV uses the subroutine
GOTOXY in lines 333-337, and PRINT
uses the subroutine MSGOUT in lines 339-
353 of Listing 2. Most importantly, notice
how macros make programming easier and
improve the readability of assembly listings
— almost like magic.

REFERENCES

1. Golding, Val J., **Applesoft From Bot-
tom to Top."" in All Abowt Applesofi, Call-
A.P.P.L.E.. Renton, WA, pp. 5-25.

2. Mossberg, Sandy. ““Disassembly Lines:
LIST and Line Edit,"" Nibble, Vol. 4/Nu.
1, pp. 161-167.

LISTING 1: MACROS

CEEREAARIAesrteb st

FEERAE R sea s ettt et nannn

NACROS

BY SCOTT ZINMERNAN
COPYRIGHT (C) 1987
BY MICROSPARC. INC
CONCORD, WA Q1742

STOR2 MAC

LDA :A
STA 8
LDA A+l
STA B4l
EnMC

cMpP2 MAC

LOA
cne
LDA
sac
ENC

Dx>@>

INC2 NAC

SETADAR NAC

JSR SFCS5B

INVERSE NAC

JSR $F277
ENC

NORMAL NAC

JSR s$F273
ENC

FLASH nAC

JSR $F280
ENC

PR NAC

LDA &
JSR SFE9S
ENC

DECPRNT NAC

LDA Ael
LDX &
JSR SED24
ENC

HEXPRNT NAC

LDA A+l
LOX ‘A
JSR SF941
ENC

BELL NAC

JSR SFF3A
ENC

CRETURN NAC

JSR SFDBE
ENC

TRBHV NAC

LDX #:A
Lov & B
JSR GOTOXY
ENC

PRINT NAC

DECIN

BLT

STAPARM

ZERO

JSR NSGOUTY

ASC
DFC
ENC

MNAC
DFC
ENC

Mac
JSR

A
0

52C

SETADR $200 388
JSR soD78
JSR SE752
STOR2 $5€, A

EMC
MAC

B8CC :

Emc
NAC
acs
EMC

NAC

ALF ©

ALS
STA
ALF

STAPARM 0/

AEN
AEN
ENC

waC
LDA

STAPARN 00

EMC

A

1/

"0/

%0

END OF LISYING 1

LISTING 2: APLPRINT

CHNONDbWN -

53 9200
54 9203
55 9206

57 9209
57 920C
58 920F
58 9211
58 9213
58 9218
59 9217

tessesesesssssesssssaerrenaasesiassannntantrnstnnt
. APLPRINT .
. .
. By S Scott Zimmerman .
o Copyright (c) 1987 .
. By MicroSPARC, Inc .
. Cancord, MA Bl1742 .
- The NicroSPARC Assembler .
B A P

USE MACROS D2

UEN

wuL

ORG 35200 :Decimal 37276
TEMP EQU oo ;Temp data storage
ITEMNUM EQU %92 iMenu item number
TNUM EQU sos ;Temporary datum save
MENUPTR EQU %27 (Menu pointer
LINCOUNT EQU $19 :Line count
COLCOUNT EQU S1A :Column count
CH FQU 324 :Cursor horizontal

MOD1® EQU S3E
NUMDIG EQU 340
LINWUM EQU 350
TXTTAB EQU 367
TOKPTR EQU $30
TXTPTR EQU $88
NEXTLN EQU SEE
APLSOFT FQU $3D0
KEYBD EQU 3CO0Q
STROBE EQU $C010
TOKTRI FQU snena
LINPAT EQU $ED24

:Usec by DECPRT
‘Number of digits
:Two -byte number
.Start of Ap program
JAp token pointer

JAp text paointer
Next Ap line pointer
iAp warm start
iKeyboard input adrs
iClear keyboare strobe
iAp token table
(Decimal number print

TaBv EQU SFBSB iVertical tad routine
couT EQU $FDED iOutput a character
CR EQU $8D iCarriage return code
ESC EQU s98 iEscape code

SPACE EQU sSA0 (Space code

LARR EQU 388
DARR FQU 384
UARR FQU 338
RARR EQU 395

;Left arrom code
;Domn arrom code
‘Up arrow code

JRIgNt arrow code

B P
« Program beg

saresanen

START CRETURN ;Output 3 cr

JSR PRNTMENU ;GO print the menu
JSR GETMENU :Get menu item number
PR PRNTPORT :Set to printer

STOR2 TXTTAB , TXTPTR

ZERD LINCOUNT

LISTING 2: APLPRINT (continued)

925C
925F
9262
9265

9268
9268
926D
9270
9272
9275
9277
9279
9278
9270
927F
9281

9284
9286
9288
9288
9280
9290
9293

92596
9299
9258
9290
9240

92A3
92n8
92A7

FO
ce
ce

ca

<o

ce

92

9%

94

92

95

95
92

95
92

94
92

F7 94

F7 94
E5 92

LISTLOOP

PAUSLOOP

CONTINUE

STOPPRNT

LIsT1

LIST2

LINELOOP
cLe
cLr

cL2
cL3

cLa

TOK

TOKLOOP
NXTTOK

PRTTOK

CRETURN
CRETURN

BIT

LDA
BPL
BIT
cup
BEQ
LDA
BPL
cup
BNE
BIT

LDA
JSR

STROBE

KEYBD
CONTINUE
STROBE
HESC
STOPPANT
KEYBD
PAUSLOOP
WCR

CONT INUF
STROBE

HCR
COUNTCHR

ZERO COLCOUNT

JSR
LDX
JSR
JSR
STA
JSR
STA
ORA
BNE

PAGECHK
INDENT
PRBLANKS
CHARGOT
NEXTLN
CHARGET
NEXTLN«
NEXTLN
LIST]

CRETURN
PR EXITPORT

Jne

START

CHARGET
L INNUM
CHARGET
LINNUMS 1
CHARGET
o

L1ST2

iGo down a line
1Go down another |ine
iClear keyboard strobe

:Has a key been pressed?
iNo, just continue
JYes, clear keyboard
(Is it an <ESC>?

iYes, so stop print
iWait for another key

;Return pressed?
iNo, don't hit strobe

:Go down a line

;6o check if end of page
Indent all lines

iPrint some blanks

;Get 1st char of linc
;Save in next-line pntr
;Get next character

;See (! program end
Not end, so continue

:Do a carriasge return
:Set back to exit

:Exit to BASIC
iGet LOB of 1ine number
:Set LOB for output

:Get next char
;Is It end of line?
(N0, so proceed

STOR2 NEXTLN, TXTPTR

ImP

LDA
Loy
JSR
LDA
JSR
JSR
IMP

JSR
CuP

BEQ

cwp
BGE
ORA
cupP
BGE
ORA
JSR
Jup

SEC
sec
TAX

LISTLDOP

L INNUMS
LINNuV
DECPRNT
NSPACE
COUNTCHR
CHARGOT
cLe

CHARGET
"

CLL
CHARGET
LISTLOOP

V30D
cL3

DowWN
LINELOOP
FSOA

cL2

L5L0000000
TOK
rilopaesoe
HSPACE

cLe
ES01100000
COUNTCHR
LINELOOP

nS7F

1Go Tor next line

(Get Line number

; and reacy It for print
:Go print decimal

:Print a space

Get back next char

:Get tine character
:End of line?

No. continue in line
Go to 1st char of next

1 1t a CRY

:No, so proceed
:Yes, go down a line
Continue in |ine
CTRL-J. line lfeed?
Yas . go down 3 line

I8 hi bit set?

:Yes. so it's a token
:Set hi bit for print
CTRL character?

Ne, so proceed

Yes make lower case
(Go output the char
:Go do next character

:Token -$7F i3 positian
of keyword in table
Nake an index

SETADR TORTBL- 1, TORPTR

Loy
DEX
BEQ

L1
PT1

INC2 TOKPTR

LDA
BPL
Byl
LDA
JSR

(TOKPTR) . ¥
NXTTOX
TOKLOOP
RSPACE
COUNTCHR

INC2 TOKPTR

LDA
BNI
ORA
ISR
JNP

(TOKPTR) . ¥
TOK1
A%10000002
COUNTCHR
PRTTOK

Set dummy index

:Go print if it
(Go to next token

:Get character
:Nontinal char s plus
Final char is minus
(Put space before token
;Output it

Get the char
Print final char
Set high bit
(Go print it
:Go to next char

151

153
154
155
156
157
158
159

161
161
161
162
162

198
199

200

20e
201
202
203
204
208
206
207
207

207
208
209
209

209
210
211
211

211
212

213

213
214
21%
21%

218
216

217

92F7
92FA
92FC

9376
9377
9378
9378

9380
938E
9399
9393
9395
9398
9394
9350
93A0

9382
9383
RELL]
9389

93ce
93cc
53CF
93p2

93E4
93ES
93E8
93eB

93FD
93FE
92481
9404

94186
92417
941A
9410

20
1]

F7
BF

58
77
oF
o1
aF
57
c1
D2

05
40
77

40
3

02

258

07
D8
o8
o7

57

94

FC
F2

9%
95

F2

95

95
95
Ll
95
Da
cs
ne
95
D5

D4
AR

TOK1 JSR COUNTCHR Print as s
LDA WSPACE :Put a space there
BNE CL4& (Alnays)
+ PRNTMENU (Print Menu) .
PeessavssasetnrsEtes ittt araesstsatannsttesannnee
PRNTMENU HOME :Clear screen
INVERSE Set inverse
TABHV 15)
PRINT ° APLPRINT ~
€9 CE D4
NORMAL ;Set back to normal
LOX #0 Init loop counter
MENULOOP STX TNUM :Save menu item number
JSR PRITEM Go print |tem
LDX TNUM Restore item number
INX Go to next menu |tem
CPX A9 Past last item?
BLT MENULOOP :No, loop again
PRIND LOX OLDNUM Get old menu num
JSR PRITEM Clear inverse video
INVERSE Set inverse
LDX MENUNUN Gel current menu
STX OLONUN iMake It 0ld number
JSR PRITEM (Print item In Inverse
NORMAL :Set back to normal
RTS
PRITEM STX ITEMNUN ‘Save item number
cLe Prepare to add
TXA Put nere for add
ADC ¥3 Calculate VTAB
TAY Make it ¥ position
LDX ¥19 HTAB
JSR GOTOXY Move cursor there
LDX TTEMNUM Restore item numbar
XA (Put |tem number in A
ASL ‘Mult by two
TAY (Make It the index
LDA MENUADR, Y Get proper adUress
STA MENUPTR (Put in painter
LDA MENUADR+1 Y
STA MENUPTHe!
JNP (MENUPTR) ;Go there
PRMEN PRINT * PRINT APPLESOFT PGM *
AQ C1 DO
D3 CF C6
C7 €D A0
RTS
PPMEN PRINT * OQUTPUT PORT: £
D4 AP DO
BA AD AO
NENUCONT LDY ITEMNUN :Get tem number
(DX DEFVAL .Y iGet current value
LDA vO ;Zero high byte
JSR LINPRT :Go print value
LDA VSPACE Print a space
WP CouT
EPHEN PRINT " VIDEO PORT L4
AQ DO CF
AR AD AD
JUP MENUCONT iMenu continue
LPMEN PRINT * LINES/PAGE 2
AF DO C1
AD AO AD
JMP MENUCONT Menu continue
SKMEN PRINT ' LINES SKIPPED: -
A0 D3 CB
€5 C4 BA
JMP MENUCONT Menu continue
CLMEN PRINT °~ CHARACTERS/LINE: *
€3 D& C5
CC C9 CE
JMP NENUCONT iMenu continue
INVEN PRINT ° SPACES INDENTED: ~
D3 A0 C9
CE D4 C5
JUP NENUCONT iMenu continue
TBUEN PRINT " CONTINUE TAB: e

217
218
219
219

942F
w430
9432
9436

9445
9446

9447
944a
944aC
944F
9451
9453
9456
9458
945A

945F
9462
9465
9468
946A
9468
946E
9471
9473
9475
9478
9479
9478
8470
947F
9482
9485
9488

94sC
S48E
9490
9493
9494
9496
9498
Sa98
9490
949F

98A2
GaAd

9449
S4ac

940C
94pF
4FR
94E3
94E5
94E8
94EA
94ED
Q4EE
94F0
94F2
94F4
94F6

94F7
94FA
94FD
94FF
9501

9506
9507
9504
9s50C
950E

D4 €9 CE D5 €5

D4
A0

95

B

ciL
A0

A0
ce

ce

co

95

95
FE
01

9
94

95

95
94

95

92

94

95

95
92

FD

95
FD

95

95

C2 BA AD
JMP MENUCONT
PRINT

Cl D@ cc
CE D4 A0

RTS

Menu continue

T EXIT APLPRINT "

D

= GETMENU (Get menu |tem) .

seesreerrarenan

GETMENU LDA KEYED
BPL GETMENU
BIT STROBE
CNP ACR
BNE GM1
LDA MENUNUM
BEQ PRINTIT
cwP nE
BNE GOSET
PR EXITPORT

HOME
JUP APLSOFT
BNE GOSET
PRINTIT ATS
GOSET JSR
JuP
cmp
BNE
LoX
INX
cex
BLT
LDX
STX
JSR PRIND
Jwe
Cup
BEQ
Cwe

GETVAL
GETMENU
VRARR
GM2
NENUNUM

GM1
DNIND

SETNER

GN2

BNE
LDX
DEX
BPL
LoX
L
cMP
BEQ
ELg

UPINOD

Gm3

v
SETNEW
VUARR
UPIND
GETWENU

Gu3
Gua

GETVAL TABHV 11,13

.Check keyboard

‘Not pressed

Pressed. clear strobe
:Carriage return?

‘No, check next

(Is it resdy to print
;It's zero, $0 print
Is It exit?

iNo, sct now value

{Exit to BASIC

:No, 30 set nueber
.Yes. return to orint
:Go get value

‘Get next key

(Right arrow?

No, check next

:Get current menu num
:Go to next

iPast last?

iNo, it's okay

:Yes, set back to zero
(Save nea menu nuw
iPrint next indic
iGet next key

iDown arrow?

iYes. go down one
Left arrow?

:No. proceed

:Get current menu num
Go to previous
.Value okay ; proceed
:Value neg | set to end
.Set new menu item
:Up arrow?

(Yes, moue menu up
(No selection

PRINT "NEW VALUE: *

CC ps cs

DECIN TEwmP

LDY MENUNUN
LOA TEMP
STA DEFVAL .Y
JMP PRNTMENU

iMake menu num an index
:Get new value

(Save new value

:Print menu again

R

« Short subroutines:
rsasasaneens

PAGECHK INC LINCOUNT
LDA LINCOUNT
CNF LINESER
BLY EXIT
LDX SKIP
BEQ EXIT
CRETURN

DEX

BNE PGLOOP

iGo to next line

:Get the num lines

(Is It =nd of pags’

(No, s0 print line

(Skip down some lines

J1f zero. don't do creturn
Qutput a carriage return
:End of spaces?

No. go do another

ZERO LINCOUNT . COLCOUNT

SAVECHAR
cour
COLCOUNT
COLCOUNT
CHRSPL
cc1

SAVECHAR
NSPACE
BEQ DOWN
CMP

:Return from PAGECHK

:Save output char
:Output the character
:Go to next character
iGet column count?
i1 it end of Iine?
iYes, see (f break
iNO. just return
iRestore character
iCheck «f it is &

. character at which
i @ break can be made

300
301
302
o3
LT
305

07
307
308
09
ile
i
312
113
34
318
316
317
318
319
322
321
322
323
324
325
326
327

333

4565
9567
9569

956F
9571
9572
9574
9575

9576
9578
9574

957¢C
957€
9580
9582
@584
9585
5587
9589
9588
9580
958E
9590
9592
9593
9595
9597
9599
9598
959D
989E

9548
9582

9584
9546
9508
9549
95a8
95AD
9580
9582
9584

9586
9587
9589
9588

958E

LSERERS2252788R

24

58

4
09

AQ

94

F8

BEQ DOAN
CNP 9"
BEQ DOAN
[
BEQ DOAN
CNP ¢" .
BNE CCO
DOWN ZERO COLCOUNT
CRETURN Ouput a carriage return
JSR PAGECHK .00 check page
LDX INDENT Indent all lines
JSR PRBLANKS Print some blanks
LDX TAB :Tab continuation |ines
JUP PRELANKS Print some blanks
Dt T PSS .
CHARGET JSR INCTXTP .Increment text pointer
CHARGOT LDX ¥@
LDA (TXTPTR X)
RTS
INCTXTP INC TXTPTR
BNE FIN
INC TXTPTR+!
FIN ATS
. cscssnccceaa .
PRELANKS DEX (Nas it zerof
BMI ENDBLNK iYes, no blanks
BLNKLOOP LDA ASPACE iGet a “blank” char
JSR COUNTCHR iGo print with COUT
DEX ;End of blanks?
BPL BLNKLDOP No. loop again
ENDBLNK RTS
GOTOXY DEX iSet range start at @
STX CH :Set horizontal tab
DEY :Set range start at @
ALY Put vertical tab here
JWP TABY :Go tab there
MSGOUT PLA Pull LOB return address
STA TEMP :Save temporarily
PLA ‘Pull HOB return address
STA TEMP41 :Save it temporarily
LDY W@ ;Init string index
MSGLOOP INC2 TEMP (Incr RYS aor for char

LDA (TEMP) Y iGet character

BEQ NSGRTS [t zero. end of string

JSR CouT (Output 11t

NP NSGLOOP (Get next char
MSGRTS LDA TEMP4+ 1 (Get MOB of HTS

PHA iPush back onto stack

LDA TEW ;Get LOB of RTS

PHA (Push |t onto stack

RTS ‘Return to there
teraessasestatttettesssanesannrennt sreseranae
+« DECPRY (decimal printer) .

B IR

DECPRNT ZERO NUNDIG

STA NUNDIG
CONVERT ZERO MOD10. MOO19-+1
LDX 216 ;16-bits to divide by 10
CcLe
DIVLOOP ROL LINNUM Do divesion by 1@
ROL LINNUM+1
ROL MOD10 :Keep track of remainder
ROL MOD1O+1
SEC (Propare to subtract
LDA MOD1O
SBC rl@
TAY :Save LOB
LDA NOO10<1
S8C #0
BLY DECONT
STY NOO1O
STA NOO1041
DECCNT DEX :Go to next bit
BNE DIVLOOP ‘Not done. so continue
ROL LINNUM Shift in last carry
ROL LINNUMs1
INC NUNDIG
LDA NOD1O
cLe
ADC A%0 Add ASCII zero
LDY NUMDIG
STA DIGBUFF Y Save ASCIL aigit
LDA LINNUM :See If value now zero
ORA LINNUMS L
BNE CONVERT No. so do next digit
« Print leading blanks:
SEC .Calc number blanks to
LDA n% right justefy number
SBC NUMDIG ‘Subtract number digits
BEQ PRDEC ‘None. so don't pad
TaY .Make # blanks a counter
BLLOOP LDA WSPACE Get ASCIT for blank

LISTING 2: APLPRINT (continued)

402 G95CO0 20 F7 94 JSR COUNTCHR Output it and count
403 55C3 83 DEY Go to next blank
404 95C8 DO F8 BNE BLLOOP
405
406 « Print the digits
407
408 95C6 A4 4P PRDEC LDY NUMDIG
409 O5C8 A2 a1 LDX At
410 95CA B9 F2 95 DECLOOP LDA DIGBUFF Y Get ASCIT cigit char
411 95CD 20 F7 94 JSH COUNTCHR iPrint to screen
412 9509 E8 INX ;Point to next dbuft loc
413 9501 88 DEY :End of string?
414 95D2 DO F6 BNE DECLOOP No. continue
415 95p4 60 RTS :Done!
415
417 B P P
418 - Data ang variables
419 Tessreersst s st Preebresesannae 4sresscanrann
420
421 9505 @9 OLDNUM DFC @ :01d menu number
422 9506 Q@ MENUNUM DFC O :Menu i tem number
423 230 sessssssssssssssrsssIesstsescescesscesecsssemeene .
424 9507 SE 93 MENUADR DA PRNEN
425 9509 78 93 DA PPNEN
426 9508 90 93 DA EPMEN
427 9500 86 93 DA LPNMEN
428 950F CF 93 DA SKNEN
429 95F1 E8 93 DA CLMEN
430 95E3 Q1 94 DA INMEN
431 9S5E5 1A 94 DA TBMEN
432 95E7 33 94 DA EXMEN
433 o= 5 : e .
434 9569 @1 DEFVAL DFC 1 :Start of list data
435 956A @1 PRNTPORT DFC 1 Printer port
436 9%EB @@ EXITPORT DFC O Exit port
437 95EC 3C LINESPP DFC 60 Lines printed/page
438 9SED @6 SKIP DFC 6 Lings skip at page bot
439 95EE 48 CHRSPL DFC 72 :Characters per |ine
440 9SEF @3 [NDENT DFC 3 Aent indent every line
441 95F0 06 TAB DFC & Continuation line tab
142 I e e e e e S R e - e, .
443 SAVECHAR DFS 1 Save output character
a44 DIGBUFF DFS 6 Up to 5 dec digits
002 Errors

9280 Hex Start of Object
95F7 Mex end of Object
03F8 Hex Lengtn of Object
7309 Hex end of Symbols
END OF LISTING 2

KEY PERFECT 5.0

CODE-5.0

13DDFO62
865C75F2
E1CF2443
FDB5F644
A19891F6
20D243C5
S5E084D7B
645ECAD9
04598770
D8BEFOC2
SAC9AA25
D12EB208
68EDB2AA
7DEAAA36 =

RUN ON
APLPRINT
ADDR# - ADDR#
9200 - 924F
9250 - 929F
92A0 - 92EF
92F0 - 933F
9340 - 938F
9399 - 93DF
93EQ - 942F
9430 - 947F
9480 - 94CF
94D0@ - 951F
9520 - 956F
9570 - 95BF
95C0 - 95F0

PROGRAM TOTAL =

