

ARCADE

SOUND EDITOR

FEATURE ARTICLE

reate your own

two-pitch sound sequences and save them in convenient sound
tables. Then use ampersand commands in your own program

to control them.

by Stephen H. Zimmerman and 8. Scott Zimmerman

ave you ever wanted your Apple to go ZAP!, BOOM!
or KAPOWEE!, but could only get click, buzz or
beep? Have you ever dreamed of dual-pitched syn-
thesizer sounds in your Applesoft program. but thought it was
impossible? If so. then Arcade Sound Editor (ASE) is for you.

Arcade Sound Editor is a utility for creating, testing and editing
sound tables. A sound table, similar to a shape table, is a binary
file that can be saved to disk and loaded into your Applesoft pro-
grams. A sound table contains individual sounds and sound
sequences that can be accessed by simple ampersand (&) commands.

The unique feature of ASE is that each sound can consist of two
pitches played simultancously to produce a musical chord or a sound
effect. Moreover, ASE allows cither or both pitches to vary as the
sound is played to produce a wide range of interesting and dra-
matic sound effects.

ASE allows a sound table to have up to 255 sound sequences,
each with up to 255 sounds. Of course, memory limitations in Apple
11 series computers restrict the actual size of your sound table. Typi-
cally, games and educational programs require three to ten sound
sequences with one to ten sounds in each: therefore, your sound
table will rarely contain more than 100 different sounds.

ASE TUTORIAL

To start Arcade Sound Editor (Listing 1), type RUN ASE from
40-column Applesoft BASIC. A title page will appear; two binary
files, DUO (Listing 2) and Sound Editor Utility (Listing 3), are
loaded into memory; and the message ‘‘Press Return to Start™ is
printed at the bottom of the screen. After you press Return, the
cdit screen is displayed (Figure 1).

ARCADE SOUND EDITOR
(B8-255)

PITCH #1. 188
PITCH #2. @
DELTA #1: 1
DELTA #2; €
DURATION: 25

(8-255)
(@-255)
(0-233)
(0.65535)

NANE ZAP
SEQUENCE: 1 OF SOUND: 1 OF 2
NEXT > NEXT
PREVIOUS PREVIOUS
APPEND APPEND
RENAME INSERT
DELETE
ARRONS (CTRL-K.J) - COPY
CURSOR UP/DOWN / VALUE SET
CHANGE VALUES

M DISK MENU : SPK/CASS
Q : QUIT 0-9 INCR 1

<SPACE>
<RETURN>

PLAYS SOUND
PLAYS SEQUENCE

FIGURE 1: ASE's Edit Screen

ASE assumes that you want to start by inputting a sound sequence;
therefore, it puts the cursor next to the “*"NAME:" label, so you
can name it. For now, press Return. We will come back to the Name
feature later.

Now, the zero after pitch #1 is shown in inverse, indicating the
location of the edit cursor. You can move the edit cursor by pressing
the Up-Arrow key (or Control-K on an Apple II Plus) to move it
up, and the Down-Arrow key (or Control-J) to move it down. Press
these keys several times 1o see the cursor move through the values
of the pitch, delta and duration. All edit commands and the current
status of the edit features are shown.

In addition, the edit screen displays the sound number currently
being edited, the number of sounds in the current sound scquence,
the current sound sequence, and the number of sound sequences
in the sound table. For example:

SEQUENCE: 2 OF 3 SOUND: 1 OF §

would indicate that the sound table has three sound sequences, you
are currently editing sequence 2, which has five sounds, and you
are currently editing sound 1. Of course, when you first start ASE,
the sequence and sound numbers are all ones, indicating that you
are editing sound 1 of sound sequence 1.

Each sound that you create requires four parameters 1o specify
the tones and one to specify the duration (see Table 1).

Changing Pitch Parameters

When you first run ASE, the program automatically initializes
one sound with all of the tone parameters set to zero. To change
a parameter, move the edit cursor to the parameter by pressing the
Up- or Down-Arrow key (or by pressing Control-K or Control-J),
then press the Right- or Left-Arrow key to increase or decrease
that parameter’s value.

Another way to adjust the values is 10 position the cursor at the
parameter and press V (for value set). The input (flashing) cursor
then appears in place of the edit cursor. Type a number within the
allowable range (use the Right- and Left-Arrow keys to correct typ-
ing errors) and press Return. If you accidentally press the Up- or
Down-Arrow, you can restore the screen by pressing Return.

Let's do some examples. Move the edit cursor to pitch #1 and
press the Right-Arrow key enough times to increase the value to
25. Press the Down-Arrow key (or Control-J) to move the edit cur-
sor to duration. Then press the Right-Arrow key until the value
is 10. Having set at least one of the pitches and the duration 1o a
nonzero value, you are now ready to play a note. Press the Space
bar. You should hear a moderately low pitch with a short duration,

Now move the cursor back up to pitch #1. Press the Right-Arrow
key once to increment the pitch to 26, then press the Space bar again.
Repeat this process to hear the pitch slowly increase in frequency.

Changing the Duration Parameter

To demonstratc how the duration value affects the length of the
tone, move the cursor to the duration parameter and use the Right-
and Left-Arrow keys to change the value several times, pressing
the Space bar after each change. You can also set the duration value
by pressing V, then typing the number of the value. Press the Space
bar to hear the sound with the new duration.

If you set the duration to a very large value and press the Space
bar to play the sound, you may have to wait a long time to regain
control of your computer. Instead of waiting, you can press Control-
Reset to break out of the program. To re-enter ASE for this or any
other reason without erasing the sound table in memory, type GOTO
260.

Dual Pitches

Because of the way the sound routine (DUO) works, the two
pitches in a dual-pitch tone are nor independent. They do not behave
like two notes that arc played on a piano. Rather, they interact in
such a way that the overall pitch and timbre (tone quality) depend
upon the relative values of pitch #1 and pitch #2 in a somewhat
unpredictable way. Therefore, ASE makes a poor music editor,
(If you want computer music, se¢ our T.U.N.E.S. program, pub-
lished in Nibble Vol. 4/No. 7.) However, it is because of the inter-
action between the two pitches that ASE can produce a wide variety
of sound effects.

Let’s look at a few examples of dual-pitch sounds. Set pitch #1
t0 25 and its duration to 200. Then move the edit cursor to pitch
#2 and adjust this parameter (0 26. Now press the Space bar to
make the sound. Instead of a single, clear tone, you now hear a
synthesizer-like dual tone,

Is the first pitch of a two-pitch tone. Its value must
be m the range 0-255. A zero indicates a rest (no pitch).
A one produces a tone of very low frequency. The
highest value, 255, produces a tone of very high

Is the second pitch of a two-pitch tone. Pitches #1 and
#2 are played simuitaneously, not sequentially. Pitch
#2 has the same range as pitch #1 and functions in ex-
actly the same way.

Is the change in pitch #1. Each of the two pitches can
change in value while playing. This change is called
the delta value, which must be in the range 0-255. A
delta value of O means there is no change in pitch. A
value of 1 increases the frequency of the pitch as it
plays. A value of 255 decreascs the frequency of the
pitch as it plays (think of 255 as —1 because it de-
creases the pitch by 1). The more you go in either
direction, the more the pitch changes. The best way
to understand the effect of a delta value is to experi-
ment. Some specific examples me given below.

Is the change in pitch #2. Delta #2 has the same func-
tion and range of valucs as delta #1, except that it
applies to pitch #2.

Is the duration (length) of the sound. Its range starts
at 0 (no duration, and hence no sound). A value of
1 will usually make a little click, depending on the
pitches. The highest number, 65535, will create a six-
minute tone. Unlike in some routines, the duration
value in ASE is independent of the pitch; that is, all
tones with the same duration value make a sound for
the same length of time.

Deha #1

Dela #2

Now press the Right-Arrow key once to increase pitch #2 to 27.
Press the Space bar to hear the new tone. The new sound has a
more hollow or echo-like tone. If both pitches are set to 25, on
the other hand, the sound is very weak (or, because of the way
the Apple speaker works, totally silent). When pitch #2 is set to
28, the tone is still different: you hear a scratchy sound which
decreascs and then increases in volume. Because of the way the
Apple’s speaker works, if both pitches are set to the same number,
the sound is very weak or no sound at all is played. Unless you
want dual-pitch sound, leave pitch #2 at zero.

Try various pitch combinations to explore the sound cffects capa-
bilities of ASE. Some other examples are included later on.

Changing the Delta Parameters

To see how the delta function works, start with a new sound by
pressing the slash character (/) key (append sound). The display
indicates that the current sound is now sound 2 of 2 and that all
of its parameters are zero. Sct pitch #1 to 10 and its duration to
200. Move the cursor to delta #1 and st its value to 1. When you
press the Space bar, the sound's pitch progressively increases in
frequency.

Now press the Left-Arrow key twice to change the delta #1 value
from] to 255, and press the Space bar 10 make the new sound.
This time, the frequency decreases as the sound is played. You hear
two separate phases of the sound because the pitch starts at 10,
decreases to 0, starts again at 255 and decreases from there through-
out the duration of the tone. To demonstrate this, change pitch #1
to 255 (leaving the delta value still at 255). In this case, the tone
frequency starts high enough that the pitch value never reaches zero.

Creating a Sound Table
If you have been doing the examples in the ASE tutorial, you
should have several sounds in your current sound tablc, Clear these

from memory by typing Q for quit, but when you are asked **DO
YOU WISH TO QUIT (Y/N)?"" press N for no. At the **CLEAR
THE TABLE (Y/N)?"" prompt, press Y to clear the current sounds
from memory. ASE will automatically return you to the edit screen.

If you are not currently in ASE, type RUN ASE to start the
program.

We will create a sound table with four sound sequences.
Sequences 1 and 2 will have two sounds each, sequence 3 will have
three sounds, and sequence 4 will have four sounds. Press Return
at the "NAME:"* prompt, then pérform the following steps:

1. Sct sound 1 of | to:

Pitch #1: 180
Pitch #2: 0
Dela #1: 1
Delta #2: 6
Duration: 25

Move the edit cursor with the Up- and Down-Arrow keys (or
Control-K and Control-J) to the parameter, and use the Right-
and Left-Arrow keys or the value set (V) method to adjust the
values of the parameters.

2. Since the current sequence has only one sound, append the sc-
cond sound by pressing the slash character (/) key. The edit
screen will display *‘Sound 2 of 2,'" with all of the parameters
sct to zero. Change the parameters as follows:

Pitch #1: 210
Pitch #2: 209
Delta #1: 1
Delta #2: 0
Duration: 10

You have completed typing in sequence 1. Press the Space bar
10 play cach sound individually, and press Return to play the
sequence. This sequence is one way of producing a *‘ZAP!"
sound.

3. Name this sequence by pressing R (for rename). When the
flashing cursor appears next to the **“NAME:"* prompt, type
ZAP! and press Return. This completes the ZAP! sound
sequence,

4. To create sequence 2, press A to append a new sequence. ASE
will show a flashing cursor next to the “NAME:"" prompt.
Enter the name BOOM! The display now indicates that you
are editing sequence 2 of 2, sound 1 of 1. Adjust the sound
parameters to 252, 250, 1, 2 and 60, respectively. Press the
Space bar to play the sound.

FIGURE 2: ASE's Disk Menu Screen

f DISK MENU

. CATALOG

. CHANGE CURRENT DRIVE (1)
. SAVE SOUND TABLE

w O O

L : LOAD SOUND TABLE
FILENAME : DEMO
(80 BYTES LONG)

<ESCAPE >

BACK TO EDIT /

5. The next sound in the sequence is similar to the first, so press
C to copy the current sound to the end of the sequence. When
you press C, the screen shows that you are now editing sound
2 of 2, but all of the parameters are the same as in sound 1.
In sound 2, we want to change pitch #1 from the current 252
to 250. With the edit cursor at pitch #1, press the Left-Arrow
key twice. Now move the edit cursor down two places (to delta
#1) and press the Left-Arrow key twice to make the value 255.
Move the cursor down another place and set the delta #2 value
10 254 by pressing the LeR-Arrow key four times. Finally, set
the duration to 130. Press the Space bar to hear sound #2, then
press Return to hear the sequence. This completes the sequence
**BOOM!™

6. Sequence 3 contains three sounds. Press A to append a se-
quence, type the name KAPOWEE!, and then set the first
sound parameters to 200, 199, 1, 6 and 30. Press */* to append
the next sound and set the parameters to 250, 250, 255, 254
and 20. Press /' again, and set the sound parameters to 214,
213, 255, 255 and 200. You have just finished the sequence
“KAPOWEE!""

7. To do the final sequence, press A to append a new (blank)
sequence. Enter the name SIREN. Adjust the sound parameters
of the first sound to 170, 0, 0, 0 and 130. Press C three times,
since the other three sounds in the sequence are very similar
to the first. Now change sound 2, pitch #1 from 170 to 190.
Do the same with sound 4. When you press Retumn, you should
hear four clear tones that sound like a European siren.

8. To save this sound table to disk so that we can use it in a later
program, press M to display the Disk menu. You will see a
screen that looks like Figure 2. Press S to save the sound table.
At the file name prompt, type DEMO. The ASE program auto-
matically appends *“.SNDS"* to the end of your file name. This
not only helps you to recognize sound files on your disk but
also ensures that ASE loads the right type of file. Press S to
save the table. ASE will access the disk to see if there is already
a file named DEMO.SNDS. If 50, you are warned that the file
will be overwritten. Press the Space bar to save the file or press
Escape to cancel the save.

9. Press C for catalog to make sure the file was saved. The cata-
log should contain two new files, DEMO.SNDS and DEMO
.NMS. The first is the actual sound table, and the second is
atext file containing the list of sequence names. After cataloging
the disk, ASE prompts for a disk command. To execute an
additional disk command such as DELETE, LOCK or UN-
LOCK, type in the command at this point. If the disk com-
mand contains a comma (e.g., the RENAME command),
enclose the entire command in double quotation marks. If you
don’t want to execute an additional disk command, just press
Return.

10. Press Escape to get out of the disk menu and return to the edit
screen. Press Q to quit ASE, and Y when you are asked if you
really wish to quit.

This completes the ASE tutorial. Spend some time trying each of

the commands to understand how they work. With practice you
will be creating your own sound tables.

ASE Commands
Let’s look at the ASE commands listed on the edit screen in more
detail.

Up-Arrow or Control-K — Moves the edit cursor up. If the cur-
sor is at pitch #1, the first sound parameter, pressing the Up-Arrow
key causes the cursor to wrap around to duration, the last sound
parameter.

Down-Arrow or Control-J — Moves the edit cursor down. If the
cursor is at duration, the last sound parameter, pressing the Down-

Arrow key causcs the cursor to wrap around to pitch #1, the first
sound parameter.

> or comma (,) — Goes to the next sound in the sequence. If there
is only one sound in the current sequence, pressing the right angle
bracket (>) or the comma (,) has no effect. Otherwise, the next
sound in the sequence becomes the current sound.

< or period (.) — Goes to the previous sound in the sequence.
This works similarly to >, ¢xcept in the opposite direction.

/ — Appends a new sound to the current sequence. This adds a
sound whose parameters are all zero to the end of the current
scquence.

I — Inserts a new sound in the current sequence. This pushes all
the sounds in the current sequence back one, and opens up space
for a new sound at the current sound position.

D — Deletes the current sound from the current sequence. If there
1s only one sound in the sequence, the entire scquence is deleted
from the edit sound table.

C — Copies the current sound to the end of the currcnt scquence.
This works the same as the append command (/), except that the
new sound has the same parameters as the current sound.

V — Sets the value of the parameter at the edit cursor. This is an
alternative o using the Right- and Left-Arrow keys to adjust the
parameter values. When you press V., a flashing input cursor
appears. Type in the value number and press Return. Do not press
the Up- and Down-Arrow keys until you have pressed Return.

S — Toggles between speaker mode and cassette mode. Speaker
mode plays the sounds through the Apple’s speaker. Cassette mode
sends the sound signal out through the Apple's cassette port. For
an Apple II Plus or Ile, connect the cassette port to the tape-in port
of the amplifier of your stereo system and select tape output from
the amplifier. Do not try to connect the cassette output port directly
to your stereo speakers! To use an Apple e with external speakers,
connect the earphone output directly to your speakers and keep DUO
in normal mode (do nor use & POP in this case).

Right-Arrow — Increases the value of a sound parameter by the
increment amount. The default increment is 1. You can set the incre-
ment to a different value by pressing a number key (see below).
If pressing the Right-Arrow key would increment the parameter
past its maximum allowable value (255 or 65535), the value wraps
around to zero.

Left-Arrow — Decreases the value of the sound parameter by the
increment amount. If pressing the Left-Arrow key would decrease
the parameter below zero, the value wraps around to 250 if you
arc editing the pitches or duration, or to 255 if you are editing the
deltas. {We chose to go back to 250 for some of the parameters
in order to preserve round numbers. Higher values of those param-
cters must be set with the Right-Arrow key or the V command).

0-9 — Sets the increment value. If you press a number from 1
through 9, the increment value is set to that number. If you press
0, the increment value is set to 10,

N — Goes to the next sound sequence within a sound table. If there
is only one sequence in the edit sound table, this command has no
effect. Its function is analogous to >, which goes to the next sound
within a sequence.

P — Goes to the previous sound sequence. This command is simi-
lar to N, but moves you in the opposite direction.

A — Appends a new sound sequence. This command allows you
to start a new sound scquence.

R — Renames the sequence. This command lets you rename the
sequences in your table. It allows a maximum of 15 characters in
cach name. Any keyboard character, except a control key, is allowed
in the sequence name.

M — Selects DOS menu mode. This lets you load or save a sound
table and perform other disk operations.

Q — Quits ASE with the option of clearing the current sound table.
After pressing Q, type Y or N after the prompts 1o quit ASE or
to clear the sound table.

Disk Menu Commands

Figure 2 shows the Disk menu commands. To display the Disk
menu, press M from edit mode. The functions of the Disk com-
mands are described in the ASE Tutorial section.

USING DUO

The heart of the Arcade Sound Editor system is the assembly
language program DUO (Listing 2), which lets you play back your
sounds with five powcrful ampersand commands. Using DUO in
your Applesoft BASIC program requires five steps:

1. Using ASE, create a sound table containing the sequences that
you want in your program. This will produce two files, the actual
sound file with a *.SNDS’ suffix and a text file containing the
names (.NMS suffix).

2. BLOAD the sound tablc into any place in memory that does not
interfere with your program. A system for selecting the BLOAD
address is explained below. You do not need to read the text
file containing the sound sequence names, and you will usually
not use it. The list of sound sequence names was created only
for reference in using ASE.

3. BRUN DUO from within your Applesoft program. For example,
in line 200 of Listing 1:

220 PRINT CHR$ (4);"BRUN DUO, ASB49D"

we include the address to which DUO is BRUN. In most of your
programs, you will want the DUO address to be higher in
memory; for example, at $9400 (37888). DUO can run at any
location in memory as long as it and your program do not inter-
fere with one another. Furthermore, DUO uses memory loca-
tions $3C8-$3CF (968-975) in the page 3 user space. If you want
to use a program or file that BLOADs into page 3 (e.g., many
short, machine language programs use a CALL 768 to page 3},
be sure that it doesn’t require those eight bytes used by DUO.

4. Include a HIMEM and/or LOMEM command to protect DUO
and your sound table from being overwritten by Applesoft vari-
ables and strings. Consult your Applesoft BASIC Programmer’s
Reference Manual to see how HIMEM and LOMEM arce used.
ProDOS requires that you set HIMEM at & memory page bound-
ary; i.e., the HIMEM value must be an even multiple of 256.
If you BLOAD your sound tablc and BRUN DUO high in
memory near DOS or ProDOS, HIMEM should be sct below
the BRUN address of DUO. This will be explained later.

5. POKE the address of your sound table into memory locations
206 and 207. This is analogous to POKEing the address of a
shape table into memory locations 232 and 233. The POKEs
t0 206 and 207 let DUO know where your sound data is located.

Now your program is ready to accept ampersand (&) commands
for making sound effects.

Selecting Addresses

The following is a simple system for selecting the addresses for
BLOADIng your sound table, BRUNning DUO, setting HIMEM,
and POKEing the sound tablc address.

TABLE 2: Ampersand Commands Recognized by DUO
TABLE 3: Beginning of Sound Table

H el :
&n Plays sequence n. For example, if you have a sound

table with three sound sequences and you want to play
sequence 2, the command would be & 2. You can also
use a variable or Applesoft expression instead of the
actual number. For example, A = 2: & A also plays
sequence 2.
& nm Plays sound m of sequence n, where n and m can be
i constants, variables or expressions. This command
lllmywtoalecundphymdivmdswmwuhm
a sequence.
& STOP Stops (turns off) the sound. All ampersand commands
: following & STOP will be silent and have a duration
of zero. This is used, for example, to sclect and de-
& select sound'in a game. f
& POP Smdsﬂumndbthummpon This turns
off the Apple’s speaker and allows you to use external
speakers by connecting the cassette output port to an
audio amplifier.. Another use of &POP is to um off
the sound but maintain the timing of the notes. An ex-
ample would be in a game where the speed of anima-
tion is determined by the duration of the tones. In such
a case, you may want to use & POP instead of & STOP,
; since & STOP sets the duration to zero.
&NORMAL Retumns sound output to normal. If the sound was turned
off with &STOP or redirected to the cassette output
port with & POP, ywmnmtbomwnonm
- 'with &NORMAL.

. Set the initial HIMEM to 38400 ($9600). This is where ProDOS
begins; it is also where DOS 3.3 begins if MAXFILES =3. For
cxample, include in your program the statement:

120 HI = 38400: HIMEM: HI

This is not critical in DOS 3.3, but in ProDOS it cnsures that
the BLOAD region is available; otherwise you may get a NO
BUFFERS AVAILABLE error message. If you are using an
Applesoft editor, such as MicroSPARC’s GALE, you may want
10 set HIMEM to the highest memory address below the editor
(check the manual that came with your editor).
. Calculate the address for BLOADing your sound table, using
the formula AS = HI — L — 1, where AS is the address for
the sound table, HI is the initial HIMEM address, and L is the
length of the sound table. The length of a sound table is shown
in ASE's Disk menu. For example, include in your program
the statement:
200 L = 80:AS = HI - L - 1: PRINT CHR$ (4);
"BLOAD filename.SNDS,A" AS

where filename is the name you supplied in ASE.

. Calculate the address for BRUNning DUO by subtracting the
length of DUO (445 bytes) from the address (AS) calculated
in step 2. Your program will have, for example, the statement:

220 AD = AS - 445: PRINT CHRS (4)."BRUN DUO, A" AD

. If your program includes a shape table or other binary file,
BLOAD it just below DUO at the address AX, where AX =
AD — LB. (LB is the length of the binary file.)

. Set the final HIMEM to the memory page boundary below the
binary file with the lowest BLOAD address. If your only two
binary files are the sound table and DUO, set HIMEM to the
page boundary below AD. If your program runs under ProDOS
and includes a command such as CAT or OPEN, make HIMEM
1024 bytes below the lowest BLOAD address. For example, in-
clude in your program a statement like this:

240 AD = 256 « INT (AD/256) - 1824: HIMEM: AD

If you have an additional binary file in your program (step 4),
use AX rather than AD to set HIMEM.

6. Tell DUO where in memory your sound table starts. POKE the
low-order byte of AS (calculated in step 2) into memory loca-
tion 206 and the high-order byte of AS into memory location
207. The easiest method for doing this is to define two func-
tions that calculate high-order and low-order bytes of a num-
ber. For example, use the statement:

280 DEF FN HB(A) = INT (A / 256): DEF FN LB(A) =
A — FN HB(A) « 256

and follow that statement with the actual POKEs:
300 POKE 206, FN LB(AS): POKE 287, FN HB(AS)

Now the sound table and DUO are in memory and ready for
use within your program,

Ampersand Commands
Once the sound table and DUO are properly installed in memory,
your program can include appropriate ampersand (&) commands

recognized by DUO. Five types of ampersand commands are avail-
able, as shown in Table 2.

USING DUO.DEMO

DUO.DEMO (Listing 4) demonstrates the use of sound tables

and DUO in an Applesoft program. After you type RUN DUO

-DEMO, the program title appears on the screen. The program then
BLOAD:s the sound table DEMO.SNDS (which you created previ-
ously), reads the name file DEMO.NMS, and BRUNSs the sound
routine DUO. If you haven’t created thesc files, the program will
supply the data,

You will then see a menu of the four sounds in the table — ZAP!,
BOOM!, KAPOWEE! and SIREN — and a list of other commands:
Q to quit the program; S to stop the sound (by executing the & STOP
command); P to execute the & POP command; and N to execute
the &NORMAL command of DUO.

You can use DUO.DEMO to demonstrate other sound sequences.
If your table has more than 14 sequences, you will have to revise
DUO.DEMO to allow their names to fit on the screen. To use a
table other than DEMO.SNDS, modify lines 160 and 170 of List-
ing 4 to use the proper file length (L) and to BLOAD the proper
sound file: modify lines 160 and 190 to open the proper file of
sequence names.

The main purpose of DUO.DEMO, of course, is to show you
how to use DUO with your sound tables. The program Starlaser
and its accompanying article in this issue also demonstrate the pro-
grams and methods explained here.

ENTERING THE PROGRAMS
To enter the programs, start by keying in Listing 1 and saving
it with the command:

SAVE ASE

TABLE 4: Data Structure of Sound Sequences

Byte Offset Duration
0 Number of sounds in the sequence

Pitch #1 of sound |

Pitch #2 of sound 1

Delta #1 of seund 1

Dela #2 of sound 1

Low-order byte of the duration of sound 1
High-order byte of the durstion of sound |
Pitch #1 of sound 2

Pitch #2 of sound 2

Delta #1 of sdund 2

Delta #2 of sound 2

Low-order byte of the duration of sound 2
High-order byte of the duration of sound 2

2 .

A ER 0RO

If you have an assembler, enter the source code from Listing 2
and assemble it using the ohject file name DUO. Tf your assembler
does not support macros, skip the macro definitions in lines 71-
92. Macro source lines, which should be skipped if you don't have
a macro assembler, are indicated with **> > > " in the mnemonic
field. The following lines are the macro expansion and should be
cntered as shown if you aren’t using a macro assembler. The lines
with ** < < < " indicate the end of a macro expansion and should
not be entered. Note that the source line numbers will not match
the listing if you aren’t using a macro assembler. If you are using
a macro assembler, you should enter only the macro source line,
using the format appropriate for your assembler.

If you don't have an assembler, enter the Monitor with CALL
— 151 and key in the hex code. Save the program with the command:

BSAVE DUO,A$9400,L$1BD

If you have an assembler, see the comments on macros above and
enter the source code from Listing 3. Assemble it and save the ob-
ject file using the name SEU. If you don't have an assembler, enter
the Monitor with CALL — 151 and key in the hex code. Save the
program with the command:

BSAVE SEU,A$8000,L.$3C8

If you are using Key Perfect on an assembled object file, BLOAD
the file, rename the file on disk, and BSAVE another copy using
the command shown above. (This will shorten the file and remove
any extraneous values stored in variable space by your assembler.}
Run Key Perfect using this copy.

Finally. enter the Applesoft program shown in Listing 4 and save
it with the command:

SAVE DUO.DEMO

For help with entering Nibble listings, sce “*A Welcome to New
Nibble Readers™ at the beginning of this issue.

TECHNICAL NOTES

The source code is carefully annotated so that assembly language
programmers can follow the program logic. We have made liberal
use of Monitor and Applesoft ROM routines, as documented in the
books Apple 1! Monitors Peeled, published by Apple Computer,
and AN About Appiesoft. published by the Apple PugetSound Pro-
gram Library Exchange (A.P.P.L.E.).

The data structure of a sound table is looscly based on the data
structure of Applesoft shape tables. A sound table consists of two
major parts, the index and the sound data. In Table 3, which shows
the index structure, the offset refers to the number of bytes from
the beginning of the file or the beginning of the file section.

Table 3 shows that the index portion of the table requires 2n+2
bytes, where n is the number of sound sequences in the sound table.
The two-byte offset for each sequence is the number of bytes from
the beginning of the file to the start of the particular sound sequence
data.

Each sound sequence has the data structure shown in Table 4,
where the offset values are relative to the start of that set of sound
sequence data. This means that each sound sequence requires 6m+ 1

bytes of memory, where m is the number of sounds within the sound
sequence.

LISTING 1: ASE

10 REM ¢ccctccsccsccssctncones
20 REM « ASE .
30 REM = ARCADE SOUND EDITOR -«
40 REM + BY S & S ZIMMERMAN
50 REM + COPYRIGHT (C) 1987
60 REM « BY MICROSPARC, INC. »
70 REM ¢« CONCORD, MA. 01742
80 REM - .
90 REM ctvvovvrvevevvonvoncrone
100 REM s«--vvcvvemcncnnnns

116 REM « INTRODUCTION

120 REM e------ccccccceen

130 HIMEM: 16384 - 512 « (PEEK (48896) =

): TEXT : HOME : DIM NS$(255)

140 VTAB 2:SP$ = " ARCADE SOUND EDITOR ™:
: GOSUB 1040: NORMAL

150 VTAB 5:SP$ = "BY ": GOSUB 1048: VTAB 7:S
P$ = "STEPHEN H. ZIMMERMAN":@ GOSUB 1040

160 VTAB 9:SP$ = "AND": GOSUB 1040: VTAB 11:
SPS = "S. SCOTT ZIMMERMAN": GOSUB 1049

INVERSE

176 VTAB 15:SP$ = "COPYRIGHT (C) 1987": GOSUB
1040

180 VTAB 16:SP$ = "BY MICROSPARC, INC": GOSuB
1049

199 VTAB 17:SPS = "CONCORD, MA ©1742": GOSuB

1849: ONERR GOTO 2860

200 EF = 1: PRINT CHRS (4):"BRUN DUO, AS$8400"

210 EF = 2: PRINT CHRS (4):"BLOAD SEU"

220 POKE 216,0: VTAB 23: PRINT " PRESS <RET
URN> TO START -> “:: GET OPS: PRINT OPS:
CALL 32768

230 REM #---vccccccccnnan

240 REM » SET UP:

260 HOME : FOR J = 1 TO 5:VP(J) = J + 2: NEXT
: POKE 206,0: POKE 207,64

270 IN = 1:PA = 1:PN = 1:PS = 1:CA$ = "CATALO
G": IF PEEK (48896) = 76 THEN CAS = "CA

280 CS = 1: GOSUB 1820: POKE 800.1: POKE 801,
1: CALL 32771

294 CN = 1: GOSUB 1310 SQ = 327‘6 CL = 3278¢:
D = 1:SDS = "_SNDS":NS$ = " _NMS"

300 IT = 32768:T28 = 32771:B2T =
2777:DE = 32786:SS = 32783

310 HOME : GOSUB 38@: & NORMAL :

"" THEN GOSUB 1148
320 GOTO 570

= 32774:18 =

IF N$(CS) =

330 OV = ASC (OP$): IF OV > 95 THEN OV = OV -
32:0P$ = CHRS (0V)

340 RETURN

350 REM ¢-------cccecuaan

360 REM + MAIN SCREEN:

370 REM #-cccccccccncnnan

380 SP$ = “ ARCADE SOUND EDITOR ": VTAB 1: INVERSE
: GOSUB 1040: NORMAL

390 VTAB 3: HTAB 7: PRINT "PITCH #1: ":PV(1)
3 ": HTAB 7: PRINT "PITCH #2: ";PV(2
yim "

400 HTAB 7: PRINT "DELTA #1: ":PV(3):" N
HTAB 7: PRINT "DELTA #2: ";PV(4):" G

: HTAB 7: PRINT "DURATION: “;PV(5):."

410 FOR J = 1 TO 4: VTAB 2 + J: HTAB 26: PRINT
"(@-255)": NEXT J: HTAB 26: PRINT "(0-65
535)"

420 VTAB 9: PRINT "NAME:
868: PRINT :
o SH

! CALL -
";CS;" OF

"INS(CS) !
PRINT "SEQUENCE:

430

449

450
460

47@

484Q

490
500
510
520

530
540
550
560
570

580
590
600

610
620

750
760

770
780
790
800
810

820
810

840
850

870
880

890

910
920
930
940

950
960
970
980
990
1000
1010
1020
1030
1040

1050
1060
1070
1080

10990
11090
1110
1129
11390

1140

MAX = 255:MX = 250:

PRINT " N : NEXT":

S": PRINT " A :

ENAME ™

VTAB 16: PRINT "ARROWS (CTRL-K,J):":

" CURSOR UP/DOWN": PRINT *

ES”

VTAB 10: HTAB 24: PRINT "SOUND:

F ":N§:" ":

VTAB 11: HTAB 26: PRINT "> : NEXT":

12: HTAB 26: PRINT "< : PREVIOUS"

VTAB 13: HTAB 26: PRINT "/ : APPEND":: VTAB

14: HTAB 26: PRINT "I : INSERT";: VTAB 1

§: HTAB 26: PRINT "D : DELETE":: VTAB 16

: HTAB 26: PRINT “C : COPY":

VTAB 17: HTAB 26: PRINT "V : VALUE SET":

: VTAB 20: HTAB 26: PRINT "S : ";: IF NOT

MF THEN INVERSE

PRINT "SPK":: NORMAL
THEN INVERSE

PRINT “"CASS": VTAB 20: NORMAL : PRINT “M
: DISK MENU": PRINT "Q : QUIT":

VTAB 21: HTAB 26: PRINT "9-9 : INCR ";:

: PRINT IN: NORMAL

VTAB 23: HTAB 8: PRINT "<SPACE> : PLAYS
SOUND": HTAB 8: PRINT "<RETURN> : PLAYS
SEQUENCE" ;

RETURN

REM ¢-------cccucvueae

REM « MAIN LOOP:

PRINT " P : PREVIOU
APPEND": PRINT “ R : R

PRINT
CHANGE VALU

“:CN:" 0
VTAB

: PRINT "/7;: IF MF

INVERSE

VTAB VP(PN): HTAB 17: INVERS
(PN);: NORMAL : PRINT " "
IF PEEK (- 16384) < 128 THEN 580
GET OPS: GOSuB 330

IF OPS$ = " " OR OPS =
940: GOTO 570

IF OP$ = CHRS (8) THEN PV(PN) = PV(PN)
IN: GOSUB 819: GOTO 57¢

IF OP$ = CHRS (21) THEN PV(PN) = PV(PN)

+ IN: GOsSuB 810: GOTO 570

IF ASC (OP$) > 11 OR ASC (OPS$) < 10 THEN
680

IF OP$ = CHR$ (1€) THEN PS = PN:PN = PN

+ 1: IF PN > 5 THEN PN = 1

IF OP$ = CHRS (11) THEN PS = PN:PN = PN

- 1: IFPN <1 THENPN = §
VTAB VP(PS): HTAB 17: NORMAL :
PS);" b

GOTO 5790

IF OP$ = “@" THEN IN = 10: GOTO 710
IF VAL (OPS) < 1 THEN 72Q
IN = VAL (OPS$)

VTAB 21: HTAB 37: INVERSE
; PRINT " ": GOTO 570
GOSUB 1370: POKE 808,CS: POKE 801,CN: CALL
B2T
OP = OV - 43: IF OP < O THEN OP = 0@

ON OP GOTO 1650,580,1650,1€806,580,580.58
9,580,580,580, 580,580,580 ,580,580,580.16
50,580,1650
OP = OV - 64;: IF OP < O THEN OP = @

ON OP GOTO 1080,580,1890,1510,580,580,58
9,580,1440 .580,580,1650,1970,1650,580,16
50.2740.1270.1590.580,580.880,580.1650
GOTO 570

REM o--cvccccaccanann

REM « CHECK VALUES:

: PRINT PV

CHRS (13) THEN GOsu8

PRINT PV(

: PRINT IN;: NORMAL

IF PN = 5 THEN MAX =
65535
IF PV(PN) > MAX THEN PV(PN) = @
IF PV(PN) < @ THEN PV(PN) = MX:
3 OR PN = 4 THEN PV(PN) = MAX
RETURN
REM o--cvvvemmenmnnnn
REM « VALUE SET:
REM ¢--------cceenn-
VTAB VP(PN): HTAB 17: NORMAL :
PN):.: HTAB 17: INPUT "":V$
1IF LEFTS (VS.1) < "@" OR LEFTS (V$.1) >
“9" THEN HOME : GOSUB 388: GOTO 578
PV(PN) = VAL (VS): GOSUB 810: HOME : GOSuB
380: GOTO 570
REM o---------m-=muu-
REM + PLAY NOTE/SEQUENCE :
REN' ¢-comvmproemiomenn
VTAB VP(PN): HTAB 17: PRINT PV(PN): GOSUB
1378
IF OP$ = CHRS (13) THEN 980
POKE 206.0: POKE 207.3: & 1
RETURN
POKE 800.CS: POKE 801,CN: CALL B2T
POKE 206.0: POKE 207.64: & CS
RETURN
REM ssacoscncicenuses
REM « CENTER LINE ROUTINE:
REM s---ecccmcacennes
HTAB (20 - LEN (SP$) / 2):

1F PN =

PRINT PV(

PRINT SP$: RETURN

REM »-------ccccceca-

REM « APPEND SOUND/SEQ:

REM e---vcvccmmecananaan

IF OPS = "A" THEN CHNG = SQ:SE = SE + 1
:!CS = SE:NS = 1:CN = 1: GOSUB 1140: GOTO
1120

IF CS = SE THEN CHNG =
CHNG = IS
NS = NS + 1:CN = NS
POKE 800,CS. POKE 801.CN

CALL CHNG: CALL T2B: GOSUB 1318: GOSUB
380: GOTO 57

VTAB VP(PN): HTAB 17: PRINT PV(PN): VTAB
9: HTAB 7:AS$ = "": CALL - 868:1 =0

SS: GOTO 1110

1150
1160
1170

1180
1198
12008
1210

1220
1230
1240
1250
1260
1270
1280
1290
1300
1310

1320
1330
1349
1350
13690
1370

1380

1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

1530
1540
1550

1560
1570
1580
1590

1600
1618
1620
1630
1646
1650

1660

1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

1840
1850
1860
1876
1880
1890
1900
1910
1520
1930

1949
1950
1960

1979
1980

1990
2000
2010
2020

2030

2040
2050

GET OPS: GOSUB 330: IF I

IF OV « > 8 THEN 1198

I =1 - 1: PRINT OPS;: CALL
= @ THEN AS = "": GOTO 11590
AS = LEFTS (AS,I)

IF OV = 13 THEN 1230

IF OV < 32 OR OV > 90 THEN 1150

PRINT OPS::AS = AS + OP$:I =1 + 1. IF
I > 14 THEN 1230

GOTO 1150
N$(CS) = AS:

= @ THEN 1190

- 868: IF 1

RETURN

PEEK (772 + J):

PEEK (778) » 256

REM 6ecscssmssamnsans

FOR J = 1 TO 4: POKE (772 + J).PV(J): NEXT

HI =
256
POKE 777,L0: POKE 778 HI
RETURN

INT (PV(5) / 256):L0 = PV(5) - HI .

CALL IS

CALL T28B

GOSUB 1310
NS = NS + 1: GOSUB 3808: GOTO 570
REM o ---o-oommmmmmoee

REM » DELETE SOUND:

CALL DE
SE = PEEK (16384):
1:SE = 1: CALL 32768
IF CS > SE THEN CS = SE

GOSUB 1820: IF CN > NS THEN CN = NS

POKE 800,CS: POKE 801 ,CN: CALL T2B: GOSUB
1319: GOSUB 388: GOTO 570

REM ¢-ccemceeeconann-

REM + CASSETTE/REGULAR:

REM
1F

IF SE = @ THEN CS =

GOTO 1
610

IF MF THEN & NORMAL :MF = 0

GOSUB 388: GOTO 570

REM ¢----cvcccceccnanan

REM + NEXT-LAST SND/SEQ:

REM ¢---cccmmmmaaao o
IF OP$ = ">" OR OPS =
c=1

IF OPS =
C= -1

IF OPS$S > ">" THEN 1720
CN=CN +C

IF CN < 1 THEN CN = NS

IF CN > NS THEN CN = 1

GOTO 1760
CS =Cs +¢C

IF CS < 1 THEN CS - SE

IF CS > SE THEN CS = 1

GOSUB 1820: IF CN > NS THEN CN
POKE 800,.CS: POKE 801,.CN

CALL T2B: GOSuUB 1310

GOsSUB 380: GOTO 578

REM »=sscsosnommsemss

REM + FIND SOUND NO.:

T T i
SE = PEEK (16384):A = 16384:AD =
OFF = PEEK (A + AD) + PEEK (A + 1 +
) + 256
NS = PEEK (16384 + OFF)

RETURN

“.” OR OP$ = "N" THEN

"<" OR OP$S = " ,” OR OPS

“P" THEN

&

|

N
-
&

CHNG = IS

NS = NS + 1:CN = NS

POKE 880.CS: POKE 8d81,CN

CALL CHNG: CALL B2T: GOSUB 380: GOTO 57
[’

REM ¢ecccencmencccen-

REM » DISK MENU:

REM s -----mmmmemmmann

ONERR GOTO 2688

PRINT : PRINT CHRS$ (4):"CLOSE": CALL C
LiL = PEEK (6) + PEEK (7) « 256: IF L =
11 AND PV(5) = @ THEN L = ©
HOME :SP$ = " DISK MENU ":
1: GOSUB 1040: NORMAL

VTAB 5: HTAB 3: PRINT "C : CATALOG "
VTAB 7: HTAB 3: PRINT "D : CHANGE CURRE
NT DRIVE":: HTAB 28: PRINT "(";: INVERSE
© PRINT D;: NORMAL : PRINT ")”: NORMAL
VTAB 9: HTAB 3: PRINT "S : SAVE SOUND T
ABLE": VTAB 11: HTAB 3: PRINT "L : LOAD
SOUND TABLE"

VTAB 24: HTAB 7: PRINT "<ESCAPE>
TO EDIT":

VTAB 13: HTAB 7: PRINT "FILENAME: ":SN$
VTAB 15: HTAB 13: PRINT "(";L;" BYTES L
ONG) "

INVERSE : VTAB

: BACK

2060
2070
2080
2090
2100
2119
2120
2130
2140
2156
2160
2170
2180

2198
2200
2210
2220
2230

2240
2250

2260
2270

2280
2290

2300
2310
2320
23308
2348
2350
2360
2370
2380

2390
2400
2410
2420

2430
2440
2450
2460

2470
2480
2490
2500
2510
2520
2538
2540
2550

2560
2570

2580
2590

2600

2610

2620

2630

{(- 16384) < 128 THEN 2068
PRINT : GOSUB 330

CHRS$ (27) THEN 2140

“C" THEN 2250

"D" THEN 2330

“S" THEN 2370

"L" THEN 2540

IF PEEK
GET OPS:
IF OP$
IF OPS
IF OPS
IF OPs
IF OPs
GOTO 2060

POKE 216,8: HOME :

GOSUB 380: GOTO 570

X = FRE (@): VTAB 24: HTAB 5: PRINT "<R

ETURN> : ACCEPT FILENAME";: VTAB 13: HTAB
17: INPUT "".AS

IF AS = "" THEN VTAB 13: HTAB 17: PRINT
SNS;: CALL - 868: RETURN

IF LEFTS (A$.1) < "A" OR LEFTS (AS$.1)

> “Z" OR LEN (AS) > 10 THEN 2180

SN$ = AS: VTAB 24: HTAB 5: CALL - 868: RETURM
REM « CATALOG:

REM »wccmmm

HOME :SP$ = " CATALOG ": INVERSE : GOSUB
1040: NORMAL : PRINT CHRS (4);CAS:".D"D

: PRINT

ONERR GOTO 2684

X = FRE (@): PRINT : INPUT "DISK COMMAN

D -> ";DC$: IF DC$S = "" THEN 1989

PRINT CHRS (4):DCS$;".D"D: GOTO 2278

VTAB 19: HTAB 5: FLASH : PRINT “"NO";: NORMAL

: PRINT " FILE IN MEMORY!":
"PRESS <RETURN> -> “;:
2

HTAB 5: PRINT
GET ANS: GOTO 198

REM +« CHANGE DRIVE NO.:
REM &---oomme o
D=3 - D: GOTO 198¢
REM oo
REM + SAVE SOUND TABLE:
REM ¢ccccccccccssnans

IF L = @ THEN 2290

VTAB 9: HTAB 3: INVERSE : PRINT "S": NORMAL
: GOSUB 2180: IF SN$ = "" THEN 19886
A = 16384: VTAB 17: HTAB 5: INVERSE : PRINT

" SAVING: ";: NORMAL :

Ds

ONERR GOTO 2430

VTAB S: PRINT : PRINT CHRS (4);“VERIFY
“:SNS + SD$;".D'"D

VTAB 19: FLASH :SP$ = "WARNING": GOSUB
1049: NORMAL :SP$ = “FILE " + SN$ + SDS +
" ALREADY EXISTS!": GOSUB 1040: GOTO 246
2

ONERR GOTO 268¢

IF PEEK (222) = 6 THEN 2460

GOTO 2688

VTAB 24: HTAB 1: PRINT “<SPACE> SAVES,
<ESCAPE> CANCELS -> ";: GET AS: IF AS =
CHRS (27) GOTO 1989

IF AS < > " ™ THEN 2460

VTAB 5: PRINT : PRINT CHRS (4);"BSAVE
“iSN$ + SD$;" A" ;A;",.L";L;".D"D

OPS = SNS + NS$: PRINT CHRS (4):"OPEN "
:OPS:"” ,D"D: PRINT CHRS (4):"WRITE ":0P$

PRINT * ":SN$ + S

PRINT SE: FOR I = 1 TO SE: PRINT NS$(I):
NEXT I: GOTO 1980

REM svvecmmccaa o

REM + LOAD SOUND TABLE:

REM ¢-cecccccnaaaaa..

VTAB 11: HTAB 3: INVERSE : PRINT “L": NORMAL
: GOSUB 2180: IF SNS = "" THEN 1988

VTAB 17: HTAB 5: INVERSE : PRINT " LOAD
ING: ":: NORMAL : PRINT " ";SNS 4+ SDS$

IF L = @ THEN 2599

VTAB 19: FLASH :SP$ = " WARNING “: GOSUB
1048: NORMAL

VTAB 2@:SP$ = "FILE IN MEMORY WILL BE E
RASED!": GOSUB 1040

VTAB 24: HTAB 1: PRINT "<SPACE> LOADS,

<ESCAPE> CANCELS -> ";: GET AS: ON AS =
CHRS (27) GOTO 198@: IF A$ < > " " GOTQ
2599

CALL IT:A = 16384: VTAB 5: PRINT : PRINT
CHRS (4):"BLOAD ";SNS + SDS;" ,A";A:;" D"
D

CS = 1:CN = 1: POKE 800,1: POKE 8@1,1: CALL
T28: GOSUB 1310: FOR I = 1 TO SE:N$(I) =
“'": NEXT : GOSUB 18290

OPS = SN$ + NSS$: PRINT CHRS (4);"OPEN "
;OPS;",D"D: PRINT CHRS (4):"READ ":0PS$
INPUT SE: FOR I = 1 TO SE: INPUT NS(I):
NEXT I

2640
2650
2660
2670
2680
2690

2700
2710
2720
2730
2740
2750
2760

2770
2780

2798

GOTO 1980

REN 5 e r e
REM « ONERR COME HERE:
REM 8- -———--~———~wnen

Y = PEEK (222)

HOME : VTAB 12: HTAB 10: PRINT " DISK "

:: FLASH : PRINT "ERROR":: NORMAL : PRINT

" #";¥:" IN LINE "; PEEK (218) + 256 + PEEK
(219)

VTAB 15: PRINT "
GET ANS: GOTO 1980

PRESS <RETURN> -> ";:

HOME : VTAB 2:SPS = " QUIT “:
GOSUB 1040: NORMAL

VTAB 12: HTAB 2: PRINT "DO YOU WISH TO
QUIT (Y/N)? ";: GET OP$: GOSUB 330

IF OPS < > "Y" AND OP$ < > “N" THEN 2
750

PRINT OPS: IF OP$ = "N" THEN 2810

HOME : VTAB 12:SP$ = "END OF ARCADE SOU
ND EDITOR": GOSUB 1040

VTAB 14:SP$ = "TYPE 'GOTO 268" TO RE-EN
TER": GOSUB 184@:SP$ = "WITH SOUND DATA

INVERSE :

INTACT": GOSUB 1040
2800 POKE 1010,191: POKE 1011.157: CALL - 1
169: POKE 207,64: VTAB 17: END
2816 VTAB 14: HTAB 2: PRINT "CLEAR THE TABLE
(Y/N)? ";: GET OPS$: GOSUB 330: IF OP$ <
> "Y" AND OP$ < > "N" THEN 2810
2820 PRINT OPS: IF OPS = "N" THEN 2850
283@ CALL IT:NS = 1:CS = 1:CN = 1:SN$ = "": FOR
1 =1 T0 5:PV(I) = @: NEXT
2840 FOR I = 1 TO SE!N$(I) = "": NEXT I!SE =
1
2850 HOME : GOSUB 388: GOTO 570
2860 E = PEEK (222):EL = PEEK (218) + 256
PEEK (219): HOME : VTAB 12
2870 PRINT "TROUBLE LOADING " MIDS ("DUOSEU"
EF ¢ 3 - 2,3)
2880 VTAB 22: HTAB 1: PRINT "<ESC> TO QUIT,
<RETURN> TO TRY AGAIN":: GET Z$: PRINT :
IF Z$ = CHRS (27) THEN END
2890 ON EF GOTO 200.210
END OF LISTING 1
KEY PERFECT 5.0
RUN O
ASE
TCODE-5.0 LINER - LiNER | CODE.4.®
icear067 10 - 10 8F73
D6431199 10 - 209 ABF3
D1ARA6BS 210 - 300 88C7
CBEROF 4D e 180 9263
LO0B1EAL7 a1g 500 058
DEAB2AB4 518 £00 29F0
65C65346 610 708 8397
3CHF5069 718 8ae 8703
9170CHFD 810 sae sace
242624A0 918 - 1000 5110
52862580 1018 - 1100 7876
BABIFSES 1118 - 1200 6633
39848F99 1219 - 1300 5763
BIDIEF28 1318 - 1400 SAFF
50641562 1413 - 1500 46A9
46008704 1518 - 1600 6A1D
70203318 1619 - 1708 6083
3827895 1718 - 1884 4576
©9580007 1810 . 1989 874D
TCSSEGAF 1910 - 2008 J1EE
71ICFEQ 2000 - 2108 BAA9
08479722 2110 - 2200 7643
50280816 2210 - 2300 ¥FES
96807722 2310 - 2489 €5A4
B220D4BC 2410 - 2500 BO3E
3DABCSD8 2810 - 2600 AFTO
EAFSCAFS 2610 - 2780 960
CBDIFBFF 2719 - 2840 923
75834430 2810 - 2899 IBCK

LISTING 2: DUO
1

PO306143 = PROGRAM TOTAL =

...... R A

owo

- By 5 Scott Zimmerman
. Copyright (c) 1987
. by MicroSPARC, Inc
- Concord, WA 01742
.

Axsonbler MERLIN PRO .

rsesssssanas Sessarantenartentanarnnnn

Comgletely relocatable

+ Zwro psge egustes .

PITCHL EQU 08 iPitch of acund 1§

LISTING 2: DUO (continuec)

9400

9403
9épa
9405

2489
9490

940F
9412
5414
9417
9419

941C.
PMIE:
9426:
9422

9424

vazs
9427
9420
9428
Gaze
5431
5433
9435
5437 .
9434

0
F6
ao
7
F5
30
FE

co
FF

83

CE
95
%0

EL

Fr

a1
o3
[}}
03
03

Lk

128

PITCH2 EQU sO1 iPitch of sound 2
DELTA) QU 503 ;Delta of sound)
DELTAZ EQU 304 ;Delita of sound 2

A3L EQU 340 iAuxiliary location
SNDTBL EQU $CE iSound tbl adrs, POKE 206
DURATION EQU 519 ;24.bit sound duration
SADPTR EQU $FA .Sound tabis pointer
AUXPTR EQU §FC Auxiliary pointer
SPKPTR EQU SFE :Speaker pointer

ows .
+ Monitor and Applesedt ROM routines: .

CHRGOT EQU sB) (Ut text character
STACK EQu $100 (6502 stack
AMPER EQU $3FS & routine address
ERROR EQU D412 (Apisoft wrror routine
TXTEND EQU 30993 Move TXTPTR end statmnt
GETAYTC &QU SEGFS Got & choracter, then. ..
GETOYT EQU SE6F2 JEval text expression
SPEAKER EQU 3Co30 Speaker switch
CASSETTE EQU sCdze Cassette switeh
RINBYTE EQU $FF58 -ROM RTS (s60)
« CONSTANTS: .
NORMTOX £Qu $90 iApplesoft NORMAL token
POFTOK w AL :Applesoft POP token
STOPTOX EQU 183 (Applesoft STOP token
cBssmmmzzos =
+ Data storage .
Pl EQU s3rR iAuxtlrary piteh 1
P2 QU Plel Auxiliary piten 2
SNXCNTR EQU Ple2 .Sound counter for loop
YSAVE QU P1e3 (Save Y register
RFLAGL QU Plea (Rest flags
RFLAG2 EQU Pl+S
STOPFLG EQU PlL4s (Stop flag
ASAVE EQU PLe7 Temp save of A reg
. =z
INCR NAC

I N

BNE NC

INC j3+1
NG <
ADD wAC

cee

LbA N1

ADC 12

STA 13

DA)1l

ADC 241

STA el

<<<
SETPTR MAC

DA ¥c2

STA |2

LOA ¥r]2

STA]2+1

<<<
. zzzsse = .
« Connect S&-hooks .
- mEEIIIZZe s ===
START JSR RTNBYTE (Put sddress on stack

TSX (Got stack pointer

DEX ‘Point to LOB

<Le ‘Prepars to add

LDA STACK. X .Get the address

ADC A<DUO-START-2 :Point to start

STA ANPER+] (Put at &-vector

I Paint to MO8

LDA STACK,X (Get sddress

ADC #>000-START -2

ETA ANPER+2 ‘Save st S-vector

LoA wsac ‘Get JNP opcede

STA ANPER Put at &-vector

»»» SETPTR.SPEAKER:SPHPTR

LDA VY<SPEAKER

STA SPKPTR

LDA ¥>SPEAKER

STA SPKPTRe1

“<<

RTS cEne initialization
. . .
+ DX (main program): .
s==m == = ==
obuo

CNP - ASTOPTOK 15 It the STOP token?

BNE CHXNORM ‘No, go check NORNAL

LDA LR} St the stop flag

STA STOPFLG 50 No sound is made

JVWP TXTEND (Exit to end of command
CHENORN CWP ANORMTOK cLs It the RESUME token?

BNE CHKPOP ‘No. go check POP

LoA (L iZero the steop fiag

STA SYOPFLG : %0 sound is made

LoA Y<SPEAKER Make sure normal

S46F
9472
9474
9476
9470
S47A:
a47C

Q47F -
0481 -
9483
9485 .
yags

D%

D%
EG

D4

e

Ga0A:

940G -
9400
Q4DF -
94E1.
94E3
94ES
94L7:

94E9

F4EA:
94ED:
F4EF:

- AA
- CA

13

129 STA
139 Jup
131 CHKPOP Cup
12 BNE
133 LDA
134 STA
135 LDA
130 STA
137 Jup
138
139 NOISE ISR
148 TXA
141 BEQ
142 LOX
143 CHP
144 BLY
145)
146 ILLEGAL LDX
147 e
148
149 SOUNDOFF
154 STA
151 LDA
152 8EQ
153 .
154
185 . Set AJL to
156
157 DOSOUND LDA
STA
LOA
STA
ASL
ROL
cLe
LOA
ADC
STA
LOA
anc
5TA

LDY
cLe
LOA
ADC
STA
INY
LDA
ADC
STA
« Check
JSR
8EQ
JSR
TXA
8EQ
Lox
cwP
o
by
194 NOWAY Lox
135 P
196
137
158
199 SNDOX
L TAX
20 DEX
202 >>>
202 ING
202 BNE
202 INC
202 N <<«
203 LA
204 STA
285 STX
286 ASL
287 FOL
288 LOoA
209 5TA
210 LDA
211 $TA
212 ASL
213 ROL
214 33>
214 e
214 LDA
214 ADC
214 STA
214 LDA
214 ADZ
214 £TA
214 <<
218 53>
215 cLe
z15 LOA
21% ADC
15 STA
215 LDA
2158 ADC
215 STA
215 <<<
216 v
217 JSR
218 BYC
210 Jup
228
221 .
222

223 SNOALL LDV

« Set SNOPTR to point to

SPKPTR . spesker, not cow

TXTEND :Exit to end of command

APOPTOX :Is it the POP token?

NOISE No, go do norase

IT] Zarc the stop flag

STOPFLG © 50 sousd thru cassette

A<CASSETTE .Exchange speaker for

SPKPTR . cassstie out

TXTEND (Exit to end of command

GEYBYT (Evaluate formula after &
Put valwe in accunulastor

ILLEGAL (Zero 15 illegal

18 Zero dummy index

(SNDTBL,X) :> number of sequences?

SOUNDOY F ‘N3, 30 go make sound

SOUNDOFF

453 Set for ILLEGAL QUANTITY

ERROR :Go print error

ASAVE Terp save of A

STOPFLG [Stop the sound?

DOSOUND No, make sound

TXTEND Yes. Just quit

point to sound sequanca indax:

ASAVE “Restore A
A3L :Save sound sequ number
" .Zero the HO8
A3L+L
A3L iMult by 2
AJL+l

iPrep for addition
SNOTBL ;Gat LOB of sound pntr
A3L 1Add sourd nunber x2
AL Stuff back
SNOTBL«1 1Get HOB of sound pntr
AL+l
ASL+1

turrent seguence
" :Zero the incex
(AIL) . Y
SNDTBL
SNDPTR
(A3L).Y

SNDTBL+41
SNDFTR+1

iT a second paraneter tor sound number

CHRGOT (At end of command?
SNDALL :Yas. so sound all
CETBYTC iCvaluate pext char
JPut value in A
NOWAY JIf zero. make error
" iZero dummy varlable
{SNDPTR . X) :Mrong input nusber?
ENDOX (No, mumber (s okay
SNDOX
LLE] i1llegal quantety error
ERROR

Make 2 single sound:

Fat sound back Into X

‘Set range 0...n
INCR.SNOPTR Point to first sound
SNDPTR

NC
SNOPTR«1

Ll
AUXPTR+1
AUXPTR
AXPTR
AUXPTR+ 1
MXPTR
A3L
AUXPTR+L
AlLsd
AUXPTR
AJXPTR+ L
ADD , AUXPTR : AL : AUXPTR

iZero OB

iSet the LOB
(NMultiply by 6

ADOAUXFPTR _SNCPTR.SNOPTR

AUXPTR
SNOPTR
SNOPTR
AUXPTR+1
SNOPTR+1
SNOPTR+1

:To force branch

;Put address on stack
:Go play the sound
Exit thrw text end

RTNBYTE
PLAYSND
TXTEND

Play the entire sound sequence

Ll :Set Index to no. sounds

LISTING 2: DUO (continued)

94ra
L1
UF7

FA
94FC
94FE.

958F
9510
9511
9312
9513
9514
9516
9518

9518,

AERREZE

82 ®2E

BIZEE0ERD

a

9510. DO

9s51F

9521
9522
9524:
9526

9529

m
o

9528 D¢

9520

952F:
9531

9533
9535:
9537

9535
9538

9530D:
953F :
el

9543;
9545

9563
9565
9568 .

9560
5474
5572
9575
9578
9574
987¢
SHTE
9588
e
9584
9536 .
9589

S58E
9558

9594 .
9596
9897 -
9594
959C .
050F

36A1
9543
9545
S5A7 .

L
L3

ES
(4]

8!
L1

: E6

: Eb

a
CA
A
a2
F8
58
ca

0w
9%

A
cs

FA
FB

FE

Lk}

FF
a3

03

23

83

03

o3
(2]

o3
03

o3
o3
o3

a3

LDA (SNDPTR),.Y .Get number of sounds
TAX Make an index
SNOLOOP STX SNDONTR :Save note counter
»>> INCR_SNOPTR :Get PITCHL offset
INC SNDPTR
BNE NC
INC SNDPTR+1
NG <<
Ly :To force branch
JSR RTNBYTE ;Put address on stack
BYC PLAYSND Go play the sound
LDX SNOCNTR (Get current count
oEx .End of sounds?
onNe ShoLoor .No. go to next
JNP TXTEND (Exit thru end of line
« Geot sound parameters and play the sound: .
sEzxrEzzzasz
PLAYSND
TSX (Oecrement the stack
oEX . pointer so the RTS
DEX returns to after
TXS the BVC
SEC :Nake higher values of
LDA 0w . input higher pitehes
s8c {SNDCFTR) .Y Get PITCHI
STA Pl
o INCR.SNOPTR [Point to then get P2
INC SNOFTR
BNE NC
INC SNDPTRs1
NC <<<
SEC
LA »
SBC (SNOPTR) .Y
STA P2
»>»> [NCR_SNDPTR .Point to then get D1
INC SNDPTR
BNE N
INC SNDPTR4 1
NC <<«
LDA (SNOPTR) .Y
STA DELTAL
»»» INCR .SNDPTR .Point to then get D2
INC SNDPTR
BNE NC
INC SNOPTRel
NC <<«
LDA (SNOPTR) . ¥
5TA DELTAZ
>>> INCR
INC SNOPTR
BNE NC
INC SNOPTR+ 1
NC <<z
LDA (SNDPTR).Y :Two-byte duration
STYA DURATION
> INCR . SNOPTR
INC SNOPTR
ONE NC
INC SNOPTR+)
NC <<<
LOA (SNDPTR) . ¥
STa DURAT 10N« 1
Lox o :léro NSH of 3-byte dur
5Tx DURAT 10N+ 2
Lox ¥7 Nult by 128
NULTLOOP ASL DURAT 10N
ROL OURATIONsL
ROL DURATION+2
DEX JEnd of multiply?
BNE NULTLOOP No, proceed
STY VSAVE ‘Save pointer location
swsmemrresrrssszszzae
« Two-tone sound routine: .
Loy Ll (Zero the dummy variable
LDA Pl .Get first piteh
STA PITCHIL
STA RFLAGI Set rest flag (P=rest)
A P2 [Get second pitch
STA PITCH2
STA RFLAG2 (Set rent flag (P=rext)
DURLOOP LDA RFLAGL Get rest flag
BEQ D1 :Skip speaker |f rest
DEC PIYCHI :Ready for first pitch?
BNE D1 ‘No. skip it
LDA (SPXPTR).Y Click the speaker
SEC :Prepare to subtract
s M .Reset pitch counter
SBC DELTAL .Change pitch
STA Pl ‘Save new pitch
STA PITCHL
D1 LDA RFLAG2 .Get rest flag
BEQ D2 .Skip speaker if rest
DEC for sscond pitch?
BNE ‘N kip ap
LDA Click the sp .r
SEC :Propare for subdtract
LDA P2 ‘Reset pitch counter
s8c DELTAZ .Change pitch
STA P2 .Save naw piteh
STA PLYCH2
D2 LDA DURATION Do 24-bir decrement
E8NE Dé
LDA DURATIONe1
BNE D5

S5A3: AS 1B 3 LDA DURATION+2
S0AB. FO @9 314 gEQ QuIT
95A0: C6 18 315 DEC DURATION+2Z
O8AF: C& 1A 316 DS DEC DURATION4I
98B1: C6 19 317 06 DEC DURATION
9583. B8 318 (487 To force branch always
95684 50 BF 319 BYC DURLOOP Continue duratien loop
120
9586. AC CB 03 321 QuIY LDY YSAVE Restore the Y register
9589: 2C S8 FF 322 BIT RTNBYTE (Force set of V bit
938C: 60 323 RTS (End of sound routine
-<End assembly, 445 bytes. Errors B ,{ ')
Qo f G
320 . " {)
CHUs. AC CR 03 321 QUIT LDV VEAVF Ractars the ¥ reginte
9ebe: 2C 58 FF 322 BIT RTASYTE (Force sat of V Bt
/9%8C. 60 23 RTS /iEnd of ‘sound routine
END OF USTING 2
KEY PERFECT 5.0
RUN ON
DUo
FT 1] saun
CODE-5.0 ADDR# - ADDRH CODE-4 .9
EBFB6CEC 9400 - 944F 2439
S82FF287 9450 - 949F 296E
A1350809 94AD - 94EF 2918
BF15€4D0 94F0 - 953F 283F
73DD8EF7 9540 - 958F 2808
92065EB7 9590 - 95BC 172
8001C578 = PROGRAM TOTAL = 0180
LISTING 3: SEU
3 “esessssissessssasassassssatsasstattstaanananntnnn
2 . .
3 - SEV -
4 . SOUND EDITOR UTILITY .
£l . By $. Scott Zimmermen .
6 - Copyright (c) 1587 .
7 . by NicroSPARC, Inc .
8 . Concord, WA D1742 .
9 - .
1 . Assemblier: NERLIN PRO -
11 . .
12 b4l sdsecentatartasast bdntaattatantinantnnunntn
i3
34 ORG Rl L)
15
16 .
17« Zero page cquates -
18 e=======z=zz=zzzzzIzs =
19
20 SNOPTR EQU 50 :Sound table pointer
21 GENPTR EQu 2 Genaral pointer
22 AUXPTR EQU 4 iAuxilisry pointer
23 INSPTR EQU 519 :lnsert painter
28 ALL EQU $3C ;General purpose regs
25 A2L EQU $3E , used by Monitor MOVE
26 A3L EQU 340
27 AdL EQU $42
28
29 .
e « Gome Sound Editor acdresses. etc .
kL (P — STt — 2
2
3 FILELEN EQu 36 :Sound table file length
34 SNOBUFF EQU s305 16.byte sound buffer
35 SEQNUN EQu $320 ;Current scund seq (800)
36 SNONUW EQU $321 iCurrent sound in 349
37 SOUNDTBL EQU s4000 iLocation of sound table
38 TABLEND EQU STFFF (End of sound table
39 NOVE QU sFEC (MONI Lo memory mave
0
41
42
43
a“
45 SETPTR WaC i»> Set pointer
as LDA LR
a7 STA]2
48 LOA LES R}
49 STA 124
5 <<
51
52 TRANS MAC
53 A)t
54 STA]2
55 oA Jiel
| 56 5TA 1241
57 <<<
L d
53 INCR wAC :»> Increment 16-bits
€a ING 1
[3} BNE NC
62 INC Jisd
63 NC <<
64
65 DECR MAC »» Decrenent L6-bits
66 LDA 1n
67 BNE ND
68 DEC |1s)
69 N DEC n
70 <<
71
72 A MAC > 16-31t agdition
73 cLec

LISTING 3: SEU (coatinued)

AS
a9
99
1 99 00 03
L]
10
L]

4
&«®
e
&
&
4
@
“«C

ﬂ..woo:—
ONAVNNS>
]
-

e
-n

45 30

W
ADC 12
sTa
LA J1a2
ADC J2e1
STA |3+
<<<
ADDC MAC i>> 16-bit const 230
cLe
[|]
ADC v<j2
STA 13
LOA 1141
ADC)2
STA)3+l
<
COMPARL WAC 2> 16.Bit compare
wa 1
(=)2
LOA Jled
$ec)2
<<
cow MAC i3> 16-BIt compare
LA)1
<P)2
LDA J1e1
SoC 241
<%
« Subrouting jumps: .
P INTTTBL
N TELZBUF
JWF BUFITBL
JNP INSERT
JNP DELETE cDalate & sound
JMP STRTSAD .Start snd on last seq
JUP STRTSEQ (Start o now sequance
JMP CALCLEN Calculate file length

« INITTBL (clear sound table, set up buffer): -

23WEEw

INITYO

»>> SETPTR_SOUNDTEL | SNDPTR

LOA S<SCUNDTEL

$TA SNDPFTR

LOA H>SOUNOTHBL

STA SNOFTR«)

<<

LOX L1 Zero the dumy in0ex
INITLOO® LDA 40 :Zero all the Lytes

STA (SNOPTR.X) :Save a zero there

> INCR. SNDPTR :Go to next memory byte

INC SNOPTR

BNE NC

INC SNDPFTR+1
N <<

»»> COMPARE . SNOPTR . TABLENO+! :Past end”

LOA SNOPTR

CWP Y<TABLEND+L

LOA SNOPTR+1

SUC HTABLEND+L

<<

BT INITLOOP :Me. 3o continwe

Loy 13 Gt tour Dytes at first
SETLOOF LDA ONESND.Y :Put table for one sound

STA SOUNDTEL.Y Put im sound tadbie

STA SNDBUFF-S.Y :Put in buffor tabdle

DEY :Point to Aext byte

L8 SETLOOP .Done?

RTS (End of INITTOL
ONESND Dre 1.0.40,1
o TOL20UF (wove tadie scund to buffer). .
. zzz===e
TOL200F

»>» SETPTR SNOBUFF (AL

LOA A<SNDSUFF

STA AW

LDA #>SNOBUFF

STA AdL4l

L

LOA SEQNUM :Get current sequence

LOY SNONUM 1Get current sound

JIR POINTSNO

»> TRANS . GENPTR (AlL

LOA GENPTR

STA AIL

LOA GENPTR4I

STA AlLel

<<

> TRANS AUXFTR ; AZL

LOA AUXPTR

STA AL

LOA AUXPTRs1

STA Az2La

<<«

JWP MEMNOVE 16O MOVe MmamOry

v BUF2TEL (move buffer sound to table)!:

8008
8QDE -
BYED:
86E2:
885
8dE7:

BOEA:

BOF7:
8OFB
BOFC

8181
sie3
8106
81080
s10¢

z832223 237

2007

AD 28
F® o0

A9 08
8D cB
A9 00
30 cC

W F7

20

a2

03
8

a3

L

a0

Lo
L3

iCet current sequence
:Get current sound

6o move memory

+ INSERT {insert a sound in the table):

INSERT

+ Move everything right six bytes
» from current location:

LOA
Loy
JSR
>
LDA
STA
LDA
STA

<<

STA
<<
JSR

SEQNUM
SNONUM

POINTSND
TRANS . GENPTR ALL (Set STARY
GENPTR

AlL
GENPTR+1
AlL+)

TRANS . GENPTR . INSPTR
GENPTR

INSPTR

GENPTR+1

INSPTR+1

POINTEND (Set SNOPTR to eand
TRANS . AUXPTR . AZL

AUXPTR

A2l

AUXPTR+L

A2L+1

ADDC AJL 6 AAL

AlL
heb
AdL
AlL+1
LELY
Adl+1

MNEMMOVE

+ Increase number of sounds by one:

LOA
JSR
JSR
Lox
cLe
LOA
ADC

STA
- Add six to

LoA
cup
8EQ
>
LOA
STA
LOA
STA
<<
J5R

SEQNUN
SETOFF
SETSEQ
"

:Point to offset
:Point to sequence

{SMDPTR ., X)
L}
(SNOPTR, X)

all of the pointers folloming this

SEQNUM iSee if It's last seq
SOUNDTBL i of the seund table
ZEROSND iYes, doa't adjust index
SETPTR. 6;ADJNUM

<o

ADJINUM

~>6

ADJINUMS I

ADJINDEX iGo adjust the index

« Zero the new inserted seund:

ZERUSND LDY
LDA
INSLOOP STA
cEY
L 48
RTS
« Auxiliary

ADJ INDEX

ADJENTRY
BEQ
ADOIT

STA
wx

v5 ilero 6 bytes
ve
(INSPTR),Y

INSLOOP
tEnd of INSERT

routine to adjust indexes.

cAdjust the index

SEQNLM
<Point to next index
(Put back in A
SOUNDTEL Past num of sequences?
ADDIT ‘N0, 30 g0 ado
ADJEND (Yea, sa don’t ade
SEYOFF iSet pntr to index
SEQNUM ;Set loop counter
oY
L ‘Zero dummy index

canted on nex! pcge

LISTING 3: SEU (continued)

(ASC 2 certsin amount
(SMOPTR,X) .Gst the Index
A .(Cen be negative)
(SNOPTR, X)
INCR SNOPTR

SNOPTR
NG

SOUNDTBL
ADDLOOF

(End yet?
‘No. se g9 to mext

« DELETE (cclete & wuu;

from memory) :

SEQNUM 1Get current sequence
SETOFF iPaint to offset
SETSEQ 'eint to sequence

“ iZaro cummy index
(SNOPTR) . ¥

" 1S 1T squal to one’?
orLseQ SYes. delete secuence
DELSW cJust delete ore sound

Deiwte 7 bytes of this sound sequence.

THANS, SNOFTR A4L Make dest
DPTR

ACOC AL 7 ALL .Set start

AdL
r
AlL
Al
»nr
AlLel

POINTEND
TRANS AUXPTRA2L .Set end byte
AUXPTR

AL
AXPTR«1
A2+l

SEQNUN iGet current sequence
SETOFF iPeint to its offset
TRANS SNOPTR ALL Make dest
SNOPTR

AL

SNOFTR

ALl

ADDC SNDPTR: 2 AIL (Set start

SNOPTR
Vel

ALL
SNOP T 1
LRV
AlLel

POINTEND

TRANS AUXPTR A2L :Set ene
APTR

AR

AUXPTReL

ALl

siet: i 29 ADOLOOP CLC
si0F Al W 23 oA
8111 &0 C» 8y 231 ADC
Blle- 51 232 $TA
233 >
8116. €6 0 233 INC
8113: 02 02 233 BNE
2114 L6 01 el INC
233 NC <<
813C: AL 00 234 LDA
$11E: 6D CC 63 235 ADG
8121 81 00 2386 STA
23 x>
8123 ks 00 237 INC
8125 08 02 2% NE
127 e 9l 23 INC
237 »C e
8129 tx C9 83 23 NG
812C AD C9 83 2335 LOA
B12F CO M W 2@ e
2132 90 Oa 241 oY
8134 &0 242 ADJEND RIS
43
2 =
245
246
247
248 OELETE
#13%: AD 20 03 249 LDA
4138 20 01 8) 2% JSR
8138: 20 A9 83 25! JSR
B13E: A0 00 252 Lov
8140 81 00 25 LOA
8142 Co 01 ne L=
B144 FR 03 255 8zQ
Bi46 4C EC 31 2% Ju
257
258 DELSEQ
e
260 .
261
262 >33
B149: AD 0D 262 LOA
8148 85 42 262 STA
0140 A5 9) 262 LA
814F 85 13 262 STA
262 <<<
263 oy
2151 18 263 ac
152: AS @2 263 LDA
8154 69 O 263 ADC
8156: 8% X 263 STA
8158: A% & 263 LOA
S1%A. 69 02 263 ADC
815C. % 263 STA
263 cce
BIOE. 20 73 8} 2es JER
265 >
B161 AS 04 265 LDA
8163 A% 3F 26y SYA
8165 A% 05 268 LOA
8167 #5 IF 265 STA
265 cce
8169. 20 D7 82 266 JSR
267
268 . Delcte the index
269
BI16C. D> 223 03 20 Loa
BI6F. 20 91 83 2n JSR
33>
STA
Lo
STA
<<<
>3
cLe
LDA
ADC
STA
LDA
ADC
STA
<<<
Jsa
5>
LoAa
STA
LOA
STA
<<
JSR

195 AE 20 03 288 LoX
8198. CA 281 DEX
8199 #A 282 TXA
819A° F0 31 283 BEQ
415C. 20 91 &) 284 JSR
819F. AE 20 03 285 Lox
SLA2: CA 206 oex
BIA) 3£ Co 83 287 $Tx
81A8. A2 0 288 Lox
SiAs 1 789 ADJLOOP SEC
81AY AL W 9% Lo
81A8 9 02 201 s8¢
3IAD: 81 0 2 STA
293 >

[T 293 INC

81 oe 02 203 BNE
LIL LR T) 203 Inc
293 N <€«

wENMOVE 1G¢ nove 1t an

« Sudtract 2 fron ol | preceding Incexes:

SEGNUM
‘Point back one index
SPut back in A
DELADS (Past num of meguences’
SETOFF (Set patr to index
SEQUN (Set loop counter
To one less than cure
CONT
" 2ere demmy Inder

.Subtr 2 from indeces
(SIOPTR. X) .Get the index
a2

(SNOPTR . X)
INCR SNOPTR
SNOF TR

NC
SNOPTR«1

8185
81a7
8189

sien:
siec

B1BE.
8iCe:
81C2:
81C4
81C6:

sics
Bice

iEC:
BIEF
B1F2.

0213
8215

821f
221
8222
8224
8226
8228

237
823A

823F
8240
8241
8243

FERE 8RS
R

Al 00
£9 o0
L1

s
L1
AS
&5

CE
oo

232838

82

CE 90

83

i A9 FA
. 80 CB

80 CC
2 F

28 72
A8 07

93 94

EH
L]

83

WA {SNDPTR.X)

S8 ne

S$TA (SNDFTR . X)

> ADDC.SNDPTR . -3 SNOPTR
e

LOA SNOPTR

ADC LRSS)

S§TA SADPTR

LDA SNDPTR+1

ADC A>-3

STA SNDPTR«1

A

DEC COUNT

BNE ADJLOOP iGo again |1 not done

« Adjust the succeeding Inderes by subtracting 9

DELADY
LOA SEQWUM 13 It the last sequence
CHF SCUNOTBL © ie the sound ?
8(Q DEICSEQ iYes. soa’t change index
»>>» SETFTR -9:ADJMWN
LA a9
STA ADJNUM
LoA -9
STA ADINUN-1
«<
LOA SEQNUW (Get current seq
JSR ADJENTRY :Go adjust indwses
« Decramant the number of seguences, zero end
ogcsnQ
DEC SCUNDTBL
JSR ZEROENOD GO zere trailing bytes
RYS
DELSND

» ROore everything down six Byles in menory

LOA SEQNWN 1Get souUnt sequence
LOY SnoNuw (G0t Aurbier sounds
JSR SETSND 100 set this sound
»»» TRANS GENPTR AGL :Becomes dest
LOA GENPTR

STA Am

LDA GENPTR4!

STA Adlal

<<«

e AQCC _ASL .6 . ALL . Sel start

cLe

LOA AL

ADC 08

STA AL

oA aAsLed

ADC w8

STA AlLa

a<

JSR POINTEND . Get end brte

»w» TRANS .AUXPTR A2 :Set oncd byte
LOA AUXPTR

STA AZL

LOA AUXPTR+1

STA A2L+1

<<

a8 NENMOYE

« Decrease nunder of sounds by |

LOA SEQMw -Get sequeace mumer
I SETOFF

ISR SETSEQ

sec Decrease f by ome
Wy =0

LOA (SNDPTR).Y

s8c w1

STA (SNDPTR) .Y

« Subtract 6 Trom all of the succeeding offsets:

»>»» SETPTR -6 ADINUM

LDA Ac-6

STA ADJNUM

LOA #>-6

STA ADJNUN-L

<<<

JSR ADJINDEX (Go adjust the (ndex

s Zero the trailing 7 bytes

ZEROEND JSR POINTEND :Go poInAt to the end
Loy ar
LDA "
zL00P STA (ALXPTR) .Y
DEY
BNE 2L00P
RYS

* STRTSND (start 4 new scund at end of tad

ezzm smee=22283s

STRTSND
LOA SEQwUm
JSR sevoer
ISR SLTSEQ .Point te sequence
(144 (Ad0 ore to MUTBEr ands
Loy "
LOA (SNOPTR) .Y
A "
STA {SNOPTR) .Y
L1

STRTSEQ

LISTING 3: SEU (continued)

8257

20
€6

260 AS

828€:
82%0:
8291
8293:
8295
8297
8298:
B20A:
825C:

: AS
. 8%

73 83 373
374

L]
"2

T A9
19

i A9
;28

: A8
: BS
i AS
: 88

.18
: AS
;88
T AY
: 69
: #5

EE

3c
02

30
o0
43

o7

882 &

CE2 4 3

Z883222 8agn

83
83

82

NC

.

JSR POINTEND Paint to end

>>> INCR.AUXPTR :Point to one past end
ING AUXPTR

BNE MC

INC AUXPTR+1

<<<

>>> TRANS . AUXPTR:A2L ;Set end move
LDA AUXPTR

STA A2L

LDA AUXPTRe1

STA A2L+1

<<<

Wy Mé

LDA L1} (Sat num of sounds te 1
STA (AUXPTR).Y

Intart neaw pointer Into sound table index:

wa M :Point te curr Ist seq

JSR SETOFF

JSR SLYseQ

»»» TRANS SNDPTR-AIL .Set start of move

LDA SNDPFTR

STA AlL

LDA SNOFTR+1

STA AlLe«l

<<<

>»» ADOC.AIL 2.ALL :Set destination

cLe

LDA AlL

ADC 4<2

STA A4L

LDA AlLsl

ADC 452

STA AdLed

<<

JSR MENMOVE :Go move everything
Calculate offset for new sequence:

Loy v

SEC

LDA AUXPTR :Get eng byte

SBC ¥<SOUNDTBL

STA (SNDPTR) . ¥

INY

LDA AUXPTR+1

SBC ¥ASOUNDTBL

STA (SNDPTR) . ¥

Increase the numbar of sequences by one:

INC SOUNDTEL :Set to new (correct) val

Acd two to all of the indexes

>»> SETPTR.2:ADJNM
LDA ¥<2
STA ADJNUN
LDA M2
STA ADJNUN+I
<<<
LDA A1 JStart with sequence VI
STA SEQMUN
INC SOUNDTBL :Temp for routine
JSR ADJENTRY ;Go adjest Index
DEC SOUNDTBL :Back to correct value
LDA SOUNDTBL :Set current seq num
STA SEQNUN te last of sound table
RTS :End of STRTSEQ
+ CALCLEN (calculate length of file): .

CALCLEN

JSR POINTEND Paint to and of fila
>>> INCR,AUXPTR ;Point one past end

INC AUXPTR

BNE NC

INC AUXPTR+1
NC <<<

SEC (Take ditterence

LDA AUXPTR

SB8C #«SO0UNDTBL

STA FILELEN

LDA AUXPTR+1

SBC A>SOUNDTBL

STA FILELEN:!

RTS
« MENMOVE (MOVE 3 TANEE OF WEWOTY) .
NENMOVE

> COMP _AIL :AGL

DA AlL

CMP AdL

LDA AlL+)

S8C AdL+1

<e<

BLT M-

Ly e Okay, so set Y for MOVE

JNP - MOVE Exit thru Mon WOVE rtn
LR :Dest is above org

SEC Calculate top of dest

8257

s2e9

82e8.

a2ec
82EE

82F0.

B2F1
82F2
B2F3
B2FS

B2F7:
B2F8.

B2FA
$2rc

B2FE.

0lee
812
LELE)
LELLY
8388
LELTY

838C

8312

Bils
316

sns:

831A

8¢
sar

83z0.

8323

8326
8328

8324

832¢.

832€
8329
8332

8334
8336
8338
8339
LAl N
8330

833F:
B34y

8343
8345

8347
8349

8348

20 9L
20 A9

AS 00
AS 01

85 93

£6 92
00 02
E6 a3

”

a3
L 3]

LOA AZL
SAC AlL
PHA
LOA AZL+1
SHC AlLel
TAX
cLe
PLA
ADC AL
STA AL
TXA
L ln ALl
STA Ad4L.l
Lox " cSet dummy index
WLOOP LOA {A2L,X) (Get tap byle
ETA {ASL, X} (MIVE 1O 10D OF dEst
»>> CONP . ALL:A2L
LOA AlL
CHP A2L
LOA AlLel
s8C AL+l
<c<
BGE NV END
>»> DECR . A2L
LDA A2L
BNE NO
DEC A2Ln1
ND DEC A2l
<<
o DECR.A4L
LoA Al
8NE NO
0EC AdL+1
ND DEC AdL
e
JWP HYLOOP
MV END mTS (End of NENMOVE

wemzs== zz=z=

NTSND (set pointers to sound in table)-

Csl| by putting current seauence ¥ in A-reg .
and current sound in Y-reg
GENPTR pornts to start of sound. AUXPTR to end

POINTSND

JSR SETOFF Point to offset

ISR SETSEQ .Point to sequence
SETSND :Set sound ENTRY point

r > TRANS . SNOPTR | GENPTR

Loa SNDPT R

STA GENPTR

LA SNDPTR«1

STA GENPTReL

€<<

> INCR.GENPTR Point to first sound

INC GENPTR

BNE NG

ING GENPTR+L

<<

LBA LL iZero HOB

STA AUXPTR+

DEY :Set current snd range

STY AUXPTR :Save sound number

ASL AUXPTR Mult by €

ROL. AUXPTR+1

2> TRANS ALXPTR AL

LDA AUXPTR

STA ASL

LOA AUXPTR+1

STA AlLe1

<<

ASL AUXPTR

ROL AUXPTR+1 iNahe 24

»»» ADO AUXPTR:ASL:AUXPTR

CLC

LOA AUXPTR

ADC AL

STA AUXPTR

LOA AUXPTR-1

ADC AlLal

STA AUXPTR«1

<<

>»» ADD.AUXPTR GENPTR GENPTR

cLc

LDA AUXPTR

ADC GENPTR

STA GENPTR

DA AUXPTR+1

ADC GENPTR+l

STA GENPTR41

L

>>> ADDC GENPTR S AUXPTR

cLe

LDA GENPTR

ADC ¥<S

STA AUXPTR

DA GENPTR+1

ADC s

STA AUXPTR#]

<<<

RTS (End of POINTSND

» POINTEND (set GENPTR to last adrs in table):

szzsreww .

LISTING 3: SEU (continued) 1

581
532 POINTEND
583 >>> SETPTR. SOUNDTBL ; SNOPTR
B373: A9 08 583 LDA Y<SOUNDTBL
8375 85 &8 583 STA SNOPTR
8377 A% & 503 LDA ¥>SOUNDTBL
8379 85 @1 583 STA SNOPTR+1
S03 <<<
8378: AR 04 504 oy v
8370 B1 88 505 LDA (SNDPTR) Y ,Get numder of uqu«lcu
837F: 80 C8 83 06 STA NUNSEQ :savo munber of sequ's
8382 20 91 83 507 JSR SETOFF ;Get index to last seq
8385 28 A9 83 388 JSR SETSEQ iPoint to last seq
B3B8 Bl B8 589 LDA (SNDFTR) .V ;Cet number of sounds
83BA: A8 s10 TAY iMake sound number
8388: AD C8 83 511 LDA NUNSEQ (Get last sound
BIBE: 4C 20 32 312 JNP POINTSAD (Exit thru peint sound
513
514
515 .+ SETOFF. SETSEQ (set sound pointer routines):
5106 summmEEEE SRR IE RS TTEEm s e
517
518 + Input: Current sequence number in A-Reg,
810 . Output: SNDPTR points to current souwnd sequence
520
821 SETOFF
8391 A2 @0 522 Lox " iZmro the HOB
8393 86 01 529 STX SNOPTRe1
9395 85 @ 524 STA SNDPTR
8337 06 00 525 ASL SNDPTR 12 bytas par affset
8399: 26 @1 526 ROL SNDPTR+1 ; se multiply by 2
83%8: 18 527 ce
839C: A9 00 528 LDA #<SOUNDTBL
B39E: 65 00 529
8340: 85 00 539 STA SNDPTR ;Save as sound pointer
B3A2: A9 40 531 LDA #>SOUNDTBL : to point to index
$324: 65 01 632 ADC SNDPTR+D
83A6: 85 01 533 STA SNDPTR+1
83A8: 60 534 RTS (End of SETOFF
535
536 SETSEQ
83A9: 8C CA 83 537 STY \’SAVE .Save Y-Reg.
B3AC: AD 9O 538 Loy (Zaro the index
83AE. Bl 90 539 LDA (SW") Y :Get LOB of offset
8380: 85 40 5w STA AL
8382. C3 511 TNY
8383: B) 80 542 LDA (SNDPTR) .Y
83685 85 4 543 STA A3Lel .Save temporarily
544 >>> ADDC.A3L :SOUNDTEL : SNDPTR
8387 13 544 cLe
83B8: AS 40 544 LOA AL
BIBA: 69 00 544 ADC #<SOUNDTBL
838C: 85 80 544 STA SNOPTH
B3BE: AS 4l 544 LOA AJL+i
BICO: 69 B4e ADC #>S0UNDTBL
83C2: a5 a1 544 STA SNDPTR+1
584 <<
B83C4. AC Ca 83 545 LDY YSAVE iReatore register
83C7: 64 546 RTS :Ene of SETSEQ
547
83Ce:. o8 568 NUMSEQ DS 1 Number of sequences
83C9: ¢ 549 COUNT oS 1 iLoop counter
B83GA- &8 550 YSAVE 05 1 :Tomp save of Y-Reg.
8308 02 00 551 ADJNUM DS 2 iNumber to adjust index
END OF LISTING 3
KEY PERFECT 5.0
RUN ON
SEU

CODE-5.0 ADDR¥ - ADDR# CODE-4.0

78039900 8000 - B8D4F 260E
33AD871D 8050 - 8O9F 297A
CDCD1C3D 80AQ - BOEF 2B1D
C1B1DDAC 80F@ - B813F 278BA

89C39B6A 8140 -
BC102266 8196 - BI1DF 29AB

ADPOP245 81E@ - 822F 2757
A9C55067 8230 - B827F 2676
7FD2248E 8280 - B2CF 2A5D
BDF63774 8200 - B831F 23CF
D2F2E15F 8320 - B836F 298D
72422CC@ 8370 - 83BF 26F9
5F5DF6A4 83Co - 83C7 843C
A7D43F3D = PROGRAM TOTAL = @3cs8

LISTING 4: DUO.DEMO

10 REM ¢vcccstsntcescnnrcsnnsnns
20 REM -

30 REM DUO . DENO .
40 REM » BY SCOTT ZINMERMAN -«
50 REM ¢ COPYRIGHT (C) 1987
66 REM ¢+ BY MICROSPARC, INC. -
76 REM + CONCORD, MA. B1742
80 REM .

90 REM ¢scscsstcssccscssscsas

110 REM +« INTRODUCTION:
120 REM ¢---cecncmcnnana
130 HI = 37376: HIMEM: HI: TEXT : HOME

140 AS = " DUO.DEMO “: INVERSE : GOSUB 480: NORMAL
: VTAB 3:A$ = "BY S. SCOTT ZIMMERMAN": GOSUB

480
158 AS = "COPYRIGHT (C) 1987": GOSUB 480:A$ =

"BY MICROSPARC, INC": GOSUB 488:NF = 1: ONERR

GOTO 649

160 PRINT CHRS (4)"VERIFY DEMO.SNDS": PRINT
CHRS (4)"VERIFY DEMO.NMS"

170 L = 80:AS = HI - L - 1: IF NF THEN PRINT
CHRS (4):"BLOAD DEMO.SNDS,A";AS

180 ONERR GOTO 658

1990 AD = AS - 445: PRINT CHRS (4);"BRUN DUO,
A" ;AD

200 AX = 256 + INT (AD / 256) - 512: HIMEM:
AX

216 ON NOT NF GOTO 249: PRINT CHRS (4);"OP
EN DEMO.NMS": PRINT CHRS (4):;"READ DEMO
. NMS ™

220 INPUT N: DIM SS(N) ,VT(N): FOR I = 1 TON
: INPUT S$(I):VT(I) = 6 + I: NEXT I

230 PRINT CHRS (4);"CLOSE"

240 IF NOT NF THEN GOSUB 550

250 DEF FN HB(A) = INT (A / 256): DEF FN
LB(A) = A - FN HB(A) + 256

260 POKE 206, FN LB(AS): POKE 287, FN HB(AS)

270 & NORMAL

280 REM ¢----cevucananan

290 REM + SETUP:

300 REM ¢-vvvvvvvmmnnn..

316 FOR I = 1 TO N: VTAB VT(I): HTAB 12: PRINT

I;". ".;S$(I): NEXT 1

320 VTAB 22:A$ = "PRESS A NUMBER TO MAKE A S
QUND": GOSUB 480

330 AS = "Q)UIT, S)TOP, P)OP, N)ORMAL": GOSUB
430

340 REM ¢-cc----coeooen--

350 REM + NAIN LOOP:

360 REM #--cccmcccaaoo.o

376 IF PEEK (- 16384) < 128 THEN 370

380 GET AS: GOSUB 528: IF AS < "1" OR AS > "
Z" THEN 3790

396 IF As “Q" THEN TEXT : HOME : END

400 IF AS "S" THEN & STOP

410 IF AS "P" THEN & POP

420 IF AS "N" THEN & NORMAL

430 A = VAL (A$): IF A <1 OR A > N THEN 37¢

440 GOSUB 490: GOTO 37@

460 REM -+ SUBROUTINES:
470 REM *----cevcccucnnnnn

480 HTAB (41 - LEN (AS)) / 2: PRINT A$: RETURN

490 VTAB VT(A): HTAB 11: INVERSE : PRINT " "
A", "iSS(A);"™ ": NORMAL

500 & A

510 VTAB VT(A): HTAB 11: PRINT " ";A:". ":S$
(A):” ": RETURN

520 A = ASC (A$): IF A > 95 THEN A = A - 32:
A$ = CHRS (A)

530 RETURN

540 REM READ IN DEMO SOUND TABLE

550 RESTORE : FOR I = @ TO 79: READ ML: POKE
AS + I ML: NEXT I

560 DATA 4.,0,10,0,23.0,36.0.55,0.2,180,0,1,
6,25,0,210,209,1,0,10,0,2,252.258

570 DATA 1.2,60,8, 250,250,255,254,130.0.3,2
©0,199,1,6,30,0,250,250,255,254,20,9,214
,213,255

580 DATA 255,200.0.4.170,0,0,0,130,0,190,9,
0,0,130,0,179,0.0. a 130, o 198.0.0.0

590 DATA 130,08, 286 MG Julyle? g

600 REM READ IN souuo NAMES

610 = 4: DIM VT(N).S$(N): FOR I = 1 TO N: READ

S$(I):VT(I) = 6 4+ I: NEXT : RETURN

620 DATA ZAP! ,BOOM!, KAPOWEE' SIREN

636 REM ERROR TRAP

640 NF = 8: GOTO 170

650 CALL - 3288: HOME : VTAB 12: PRINT "TRO
UBLE LOADING DUO": VTAB 22: PRINT "<ESC>
TO QUIT. <RETURN> TO TRY AGAIN";: GET 2
$: PRINT : ON Z$ < > CHRS (27) GOTO 17
8: END

END OF LISTING 4

