AMPERFORMATTER

APPLE UTILITIES

ith Amper-

Formatter, text formatting on the Apple // becomes nearly

automatic!

ikc most programmers, I've

struggled with the task of for-

matting ext on the Apple
screen. Whether you use text in games,
application programs or utilitics, formatting
can make the difference between a well-
designed, user friendly program and a
poorly designed one.

For instance, words shouldn’t break ran-
domly when they reach the edge of the
screen. You don't want information to scroll
off the screen. If you own an Apple I1 Plus.
your formatting routine should prevent gar-
bage on the screen when lower-case charac-
ters are entercd.

AmperFormatter does all this and more.
This utility is designed for use within Apple-
soft programs running under DOS 3.3 or
ProDOS. It automatically performs word
wrap on both 40- and 80-column screens,
page breaks and lower-case to upper-case
conversion. Plus modifying already-
formatted text is simple. AmperFormatter
is easy to use and is written in machine lan-
guage for speedy execution.

USING AMPERFORMATTER

To use AmperFormatter in your own pro-

gram, you must first insert the following line
at the beginning:

10 HIMEM: 38400 PRINT CHRS$(4)
"BRUN AMPER.FORMAT" :HIMEM
38144

It doesn't have 10 be line 10, of course, but
it should be near the beginning of your pro-
gram. before you do any printing to the
screen. This line sets up the ampersand vec-
tor to point 1o the AmperFormatter routine,
and sets HIMEM (o prevent AmperFormat-
ter from being overwritten by BASIC. Note
that any other programs that occupy high
memory will be destroyed by this process.

Before each display of text and after clear-
ing the screen, the line count must be ini-
tialized so that AmperFormatter will know
how many lines of text to print before doing
a page break. This is done by POKEing a
zero into location 38394 before calling the
AmperFormatter routine.

Now, whenever you want to print some-
thing on the screen, instead of using the
PRINT command, use an ampersand (&) in-
stead. AmperFormatter takes carc of all the
formatting problems for you. It automati-
cally detects whether you are using 40 or
80 columns, and takes care of word wrap
and page breaks. To print a blank line, print
one blank space using:

g "

Do not use the ampersand without a string

RIS

of some kind to print. AmperFormatter ex-
pects something after the ampersand. and
will generate a SYNTAX ERROR if there
is nothing there.

Listing 1 is the AmperFormatter pro-
gram, and Listing 2 is a demonstration
program that prints a description of Amper-
Formatter and shows you how to use it

ENTERING THE PROGRAMS

To enter the programs, first cnter the
Monitor by typing CALL —151. At the
asterisk prompt, type in the hexadecimal
code n Listing 1. and save it with the
command:

BSAVE AMPER.FORMAT,A$94F5,
1.$106

Or, if you prefer. you may type the listing
into your assembler and assemble it. Now
type in Listing 2 and save it with the
command:

SAVE AMPER.DEMO

If your Apple does not support lower-case,
Jjust use all capitals. Note that the Key Per-
fect table will not match.

For help with entering Nibble programs,
see A Welcome to New Nibble Readers™
at the beginning of this issue.

HOW THE PROGRAMS WORK
AMPER.DEMQ (Listing 2) prints text
using AmperFormatier and the & symbol,

LISTING 1: AMPER.FORMAT
A X 2 1
Some mention might be made of the two 2 e IR AR R o
PEEKSs used: the value PEEKed in lines 3 .
390-400 (PEEK (49183)) is greater than 128 - B ey P :
if the 80-column card is wrned on. PEEK . 6 . Copyright (c) 1986 .
e o TR S 7 . By MicroSPARC. Inc -
(=i IQl) returns a value of 6 when the pro % : ol et A 3
gram is run on an Apple //e or /¢ (lines 9 . .
470-480). 19 - Assemblar: Marlin .
In the actual AmperFormatier program 1 O
(Listing 1), lines 37-41 set up the amper- 13
sand vector and exit. Once that is done, this :; ORG- $94F5
part of the program 1s no longer needed. and 16 COUNT s $4 iLetters in word
can be overwritten by Applesoft. Lines 47- is eite = o i oy 30 S miprinotd
48 put the address of the string following 19 PTREND = 58 {End of string =
e ampersand in the X and Y Registers, and g? ::DWDT“ = :;z =:idth °.'1 text :'Td“
. = Cursor orizonta
pul.thc.: length in mc Acgumulatm". The 22 CHRGET = $81 .Get next character
beginning and end pointers for the string are 23 CHRGOT = $87 [Get last character
avvad il T 24 ANPERV = $3F5 .Ampersand vector
saved in PTR and PTREND. respectively. 25 OURCH = $578 ‘Cursor on 8@-cols
in lines 49-59. 26 RDBOVID = SCO1F :8@-cols on or not
27 FRMEVL = SDD7B :Evaluate a formula
28 FREFAC = SE600 .Get address of string
29 PRBL2 = SF94A :Print spaces
30 VERSION = SFBB3 :FBVERSION
L T e T T T T 31 RDKEY = SFDOC :Get a keypress
3 32 CROUT = SFD8E Print carrisge return
33 cour = SFDED Print a character
34 RESTORE = $FF3F ;Recover registers
35 SAVE = SFF4A iSave registers
36
94F5: A9 95 37 SETAMPV LDA H>START
94F7 8D F7 03 38 STA AMPERV+2
94FA: A9 00 39 LDA ASTART
94FC: 8D F6 03 40 STA AMPERV+1 :Set ampersand vector
94FF . 60 41 RTS :Ready for use!
42
43 - ==an
a4 « PRINTMSG Main Routine
a5 -
a6
9500: 28 7B DD 47 START JSR FRMEVL .Evaluate formula
9503: 20 00 E6 48 JSR FREFAC :Find string in memory
) 9506: 84 07 49 STY PTR+1
Lines 63-66 change the last character of ::g:g :: 06 g? 23 PTR iAddress of string
the string, which is normally in positive 9508 CA 52 DEX
ASCII, to negative, This way, AmperFor- 3::60 : t: o zxé iDecrease ACC
2 q : 4 (K
matter will know when it has reached the 950E: 65 06 55 ADC PTR ‘Add length of string
last character of the string. 9510: 85 08 56 STA PTREND to get location of end
: T 9512: 98 57 TYA
Lines 70-74 set a flag indicating whether 9513- 69 06 58 ADC 40 .Get high byte + carry
or not an Apple //e or //c is being used. A 9515: 85 @9 59 STA PTREND+1
$00 significs that a /f¢ is not being used. :‘: Bidate ISeEBvEE B wter
This information determines whether or not 62 SENE LR RNSS. o
to print lower-case text. :g:;= :“' :: :i Loy U:’m T S
g > H LDA 4). Y :Get last byte
PRINTMSG (lines 80-83) sets the word 9518: 69 80 65 ORA ¥580 ‘Change to negative
length (COUNT) to zero and determines the 951D: 91 08 66 STA (PTREND).Y
. . Calls . 3 67
present location in the string. Lines 85-94 & o CRECK-Tor ATd
count the number of letters in the word, The 69
end of the word is signal s 2 951F: AD B3 FB 70 LDA VERSION
i _gna(_:dbgn _;I).:ce](s 0) 9522: €9 06 71 T i// signature byte?
or the end of the string (line 87). The length 9524: DO 01 72 BNE NOTIIE
of the word is stored in COUNT. 9526: 88 73 DEY iMinus = //e
Lines 96-105 start a new line if the length 0327::284,/08 a5 OIUE a7y faowe
of the word plus the current cursor position 76 -

exceeds the screen width. Note that since
the width of the screen is used instead of 40
or 80 for this calculation, you can set the
window width 1o anything you want, and the
text will still print properly.

Lines 109-111 place the pointer on the
correct page of memory. Lines 113-134
print the text. Any carriage returns are han-
dled by CARRIAGE instead of the normal
CROUT. Lines 122-126 convert lower-case
to upper-case, if necessary.

When a space s found (lines 129-130) or
the end of the string is reached (line 115).
execution goes to DIDWORD (lines 138-
142), which increments the pointer and goes
back for another word.

When the end of the string is found, a
check 1s made for a semicolon. If there 1s
no semicolon, a carriage return is printed;
otherwise. flow passes 10 RESET (lines 153-
159). which sets the last character of the
string back to positive ASCIL.

The CARRIAGE subroutine (lines 165-
195) prints a carriage return via CROUT at
SFDSE and then checks the line counter to
see if the bottom of the screen was reached.
If it was not, flow passes to EXITCR and
returns o the main program. Otherwise:

1. The counter is reset 1o zero (lines
171-172).

2. The message (CONTINUED) is printed
(lines 174-179).

3. A keypress is fetched (line 181).

4. The message is erased (lines 182-189).

5. Flow returns to the main program (lines
191-192).

CUSTOMIZATION

Without the disposable initialization sec-
tion, AmperFormatter occupies just under
a page of memory, so making any change
will probably require that you change the
program origin (line 14). This shouldn’t
change the BASIC interface, except for the
HIMEM command.

It you print only one- or two-line strings,
you won't need the line counting routine
used for the page-break feature. In addition,
you could remove lines 117-120 and 165-
195, and change all of the JISR CARRIAGE
commands to JSR CROUT, to save some
memory.

LISTING 1: AMPER.FORMAT (continued)

77 « Print the string

78 .
79
9529: AC F9 95 80 PRINTMSG LDY INDEX (Position in string
952C: A9 @0 81 LDA ¥0
952€: AA 82 TAX
952F. 85 94 83 STA COUNT Letters in word
84
9531: E6 04 85 WRAP INC COUNT
9533: Bl 06 86 LDA (PTR) .Y .Get byte
9535: 30 ec 87 BMI ADD (End of string
9537: €9 20 88 CMP 320
9539: FO 08 89 BEQ ADD :End ot word
9538: C8 92 NEXTLET INY
953C: DO F3 91 BNE WRAP
953E: €6 ©7 92 INC PTR+1 (Next page
9540: ES8 93 INX :Flag next page
9541: 10 EE 94 BPL WRAP
95
9543: 18 96 ADO CLC
5544: AS 04 97 LDA COUNT iLetters in word
9546: 2C 1F ce 98 BIT RDBOVID 180 -celumns?
9549: 10 04 99 BPL FORTYCOL
954B: 6D 78 65 100 ADC OURCH iAdd letters to cursor position
954E: 2C * 101 HEX 2C
954F - 65 24 102 FORTYCOL ADC CH :Add length to current position
9551: €5 21 103 CMP WNDWDTH :Is it over screen width?
9553 90 03 104 BLT PRINTWO :Doesn’t go past screen
9555: 20 Bl 95 105 JSR CARRIAGE Print <return>
106
107 =« Print the word
108
9558. CA 109 PRINTWD DEX
9559. 3@ 02 110 BMI PRINT :Still on same page “.
9558: C6 07 111 DEC PTR+! :Restore correct page
112
9550: AC F9 95 113 PRINT Loy INDEX
9560: Bl 96 114 PRTWORD LDA (PTR) .Y
9562: 30 2F 115 BMI END :Last char in string
9564: 09 80 116 ORA ¥SBO
9566: C9 8D 117 CMP ¥38D
9568: DO 06 118 BNE LOWERC ‘Not a return
956A. 20 B1 95 119 JSR CARRIAGE .Substitute for CROUT
956D: 4C 81 95 120 JMP NEXTCHAR
121
9570: 24 05 122 LOWERC BIT MACKID
9872: 30 06 123 BMI PRTCHAR i//e == print lowercase
9574: C9 EO 124 CMP HESEQ
9576. 90 @2 12% BLT PRTCHAR :Not lowercase
9578. 29 DF 126 AND HSDF iConvert
127
957A: 20 ED FD 128 PRTCHAR JSR COUT
957D: C9 AD 129 CNP HSAD
957F: FO 07 130 BEQ DIDWORD ;Done with a word
9581: C8 131 NEXTCHAR INY
9582: DO DC 132 BNE PRTWORD
9584. E6 07 133 INC PTR+1
9586: DO D8 134 BNE PRTWORD :Finish the word
135
136 « Prepare for another word
137
9588 C8 138 DIDWORD INY
9589 DO 02 139 BNE DONE
9588. E6 07 140 INC PTR+1 :Point to next word
958D: 8C F9 95 141 DONE STY INDEX (Save position
9590: 4C 29 95 142 JNP PRINTMSG
143
144 - End of the message
145
9593: 2@ ED FD 146 END JSR cour
9596: 2@ B7 00 147 JSR CHRGOT .Get this character
9599: C9 3B 148 CMP #$3B
9598:. F@ 05 149 BEQ RESET :Semicolon
959D: 2@ Bl 95 150 JSR CARRIAGE Print <return> if not "~
9540 D9 03 151 BNE NEGATIVE
152
98A2: 20 Bl 00 153 RESET JSR CHRGET .Point to next char
95A%5. AO @0 154 NEGATIVE LDY &0
95A7: Bl @8 155 LDA (PTREND) Y
95A9: 29 7F 156 AND ¥STF iReset last byte of string
95AB: 91 08 157 STA (PTREND) .Y
95AD: 8C F9 95 158 STY INDEX iReset position
9580: 60 159 RTS
160
161
162 + CARRIAGE: Print carriage return
163 .
164
95B1: 20 4A FF 165 CARRIAGE JSR SAVE iSave registers
95B4: 20 8F FD 166 JSR CROUT
95B7: EE FA 95 167 CHECK INC BOTTOM icount the |line
95BA. AD FA 95 168 LDA BOTTOM
958D C9 17 169 CMP #s17 (At bottom of screen?

95BF . 90 28 170 BLT EXITCR

95C1- A9 00 171 LDA "o 95F9: 00 196 INDEX HEX 00

95C3: 80 FA 95 172 STA BOTTOM .Reset counter 95FA: @0 197 BOTTOM HEX 08
173
95C6: AD 00 174 LOY L)
95C8: B% ED 95 175 CONT LDA CONTINUE . Y --End assembly, 262 bytes, Errors. 0
95C8: FO 06 176 BEQ WAIT
95C0: 20 ED FO 177 JSR - COUT ;Print "(CONTINUED)" ENDIOF LISTING 4
9500: C8 178 INY
9501: DO F5 179 BNE CONT
180
95D3- 20 AC FD 181 WAIT JSR RDKEY :Get a keypress
95D6 A9 99 182 LDA e
9508 85 24 183 STA CH KEY PERFECT 5.0
95DA. 8D 7B 05 184 STA OURCH :Put cursor on calumn O RUN ON
95DD - A2 ©B 185 LDX #11
95DF © 20 4A F9 186 JSR PRBL2 (Erase "(CONTINUED)" | _ _____________ f!ffﬁ;f???fz _____________
A 187 LDA e @ | TTTREET o a | annelh | ARReN Aame o a
S o s v o CODE-5.0 ADDRW - ADDRF CODE-4.0
956 . 8D 7B 05 189 STA QURCH .Set column agaim | TEEmsees messsssssssss SoseemmS
19¢ D74B875E 94F5 - 9544 2669
95E9. 20 3F FF 191 EXITCR JSR RESTORE Restore registers CAC3D707 9545 - 9594 28AC
95EC: 60 :3§ RTS 7EA16EDF 9595 - 95E4 2A1B
F - FA 09
9SED: A8 C3 CF 194 CONTINUE ASC " (CONTINUED) " ‘ gggggggs < P:g(Ei:AM 33TAL = 0“6’2
95F0° CE D4 C9 CE D5 C5 C4 A9 - -
95F8: 80 195 HEX 20 |

LISTING 2: AMPER.DEMO ' ‘

10 REM s>szxxsscscssvovortoon 150 TEXT : HOME : NORMAL : VTAB 10: HTAB WID
20 REM - AMPER.DEMO - E - 9: & "Amper-Format Demo”: PRINT . HTAB
30 REM > BY: HOWARD HUANG . WIDE - 8: & "By Howard Huang": PRINT : HTAB
40 REM - COPYRIGHT (C) 1986 - WIDE - 20: & "+« Copyright 1986 by MicroS
50 REM - BY MICROSPARC, INC - PARC. Inc. ="
60 REM - CONCORD, MA 01742 - 160 GOsuB 820
70 REM svevovcoennacssnssssoe 170 REM
80 HIMEM: 38400: PRINT PRINT CHRS (4)"BRU 180 REM === SELF-PRAISE ===

NAMPER . FORMAT " e \| 190 REM
90 HIMEM: 38144 [P0nS oae w700 1| 200 HOME - & "Welcome to Amper Formatter!"
100 RETS = " "“:COUNT = 38394 210 & RETS: & " Amper Formatter is a machi
110 REM ne language utility designed to format t
120 REM === TITLE PAGE === ext strings for screen display.”
130 REM 220 & " The features include:" & RETS$: &

140 WIDE = PEEK (33) / 2 + 1

LISTING 2: AMPER.DEMO (continueo) 378 Bew
380 & " Another nice feature is the abilit
” e . y to detect whether or not the 80-column
1) Automatic word wrapping”: & "2) Dete card is active. If the card is active,
ct:on of 46 or 88 column screen . Amper Formatter will take advantage of |
230 & "3) Conversion of lower to upper case | t and break the words accordingly.": & R
% "4) Page breaks on the screen’ ETS
240 & "5) DO§ 3.3 - ProDOS compatibility": & 390 & " You might want to try running this
RETS: & Thls I1s a short demonstratio program in ";: IF PEEK (49183) > 128 THEN
n that highlights these features and sho & "40":
WS you how to use Amper Formatter from w 400 IF PEEK (49183) < 128 THEN & "80";
ithin your own programs. ™ 410 & " column mode to see the difference.":
250 GOSsuB 820 GOSuUB 820
260 REM 420 REM
270 REM === WORD WRAP === 430 REM === LOWERCASE ===
280 REM 440 REM
290 & " First, let's look at word wrapping 450 & " If you have an Apple II or II+, an
Normally. when the App!e reaches the e y lowercase text displayed by Amper Form
dge of the text screen, it automatically atter will be converted automatically to
goes down to the next line. This someti uppercase. This way, Apple //e and //c
mes causes”;

owners can write programs that are compa

300 & " words to be split in the middle. res tible with all Apple II's while ":
ulting in unreadability and an unprofess 460 & "still taking advantage of the //e and
ional appearance.":. & RETS | //c's new features."”: & RETS

310 & " With Amper Formatter, you may use 470 & " To see the difference, try using t
messages of any length in your programs his program on an Apple “:: IF PEEK (-
without worrying about word breaks; Ampe 1101) = 6 THEN & "II or II+":
;E;grmatter will break them for you'!" & 480 IF PEEK (- 1101) < > 6 THEN & "//e o

r //c”;

320 GOSUB 820 490 & ".": GOSUB 820

330 & " If you list this program, you'll f 500 REM
ind that all the text is unformatted. an 510 REM -=- PAGE BREAKS ===
d that the |lines are being properly form 520 REM
atted and printed by Amper Formatter. wi 530 & " Amper Formatter will also handle t
tﬁ carriage returns in the proper places | ext displays longer than one screen long
g . Amper Formatter will count the number

340 & RETS: & " Just type your messages o of lines printed. and when 23 lines hav
nce and they are automatically formatted e been printed, "
for the size of the screen.": GOSUB 820 540 & "the word (CONTINUED) is printed at th

350 REM [e bottom of the screen, and the program

360 REM === 40/80 COLUMNS ===

waits until the user presses a key. " &

550

560

570
580
590
600

610

620
630
640

650
660

670

680
690

700
710

720
730
740

RETS: & "Here's an example:": GOSUB 820
FOR I = 1 TO 25:A% = STRS (I) + " Nibbl
e Magazine": & A$: NEXT I

& RETS: & 7 When you are finished prin
ting text, you should set the line count
er back to O with POKE 38394 .0.": & RETS

GOsuB 820

REM

REM === DOS - ProDOS ===

REM

& " Amper Formatter is compatible with

both DOS 3.3 and ProDOS.": & RETS

& " All of these features, plus machin
e language speed, make Amper Formatter f
ast and easy to use.”: & RETS

& " Now, let's briefly look at how to
use Amper Formatter. ': GOSUB 820

REM

REM === USING ===

REM

& " It's easy to set up Amper Formatte
r. BRUN the program and set HIMEM:. 38144
.". & RETS

& " Te actually use the formatter is j
ust as simple. Wherever you want to prin
t something, just use an ampersand [&] 1
nstead of PRINT. Here are some examples

& RETS

AS = "& " + CHRS (34) + "Hello. how are
you today?" 4+ CHRS (34): & AS

& "& AS": & "& CHRS(160)": & "& CS(I)":
"& AS:": & RETS

GOSUB 820

& " The only restriction is with print
ing blank lines. In BASIC, this is done
with a simple PRINT statement, with no s
tring specified. With Amper Formatter, y
ou must supply a string of some kind, ev
en if it's just one space. "

GOsSuB 820

REM

REM === WRAP IT UP ===

&

750
760

770
780
790
800
810
820

830
840

library.

REM

& " Amper Formatter will
dition to your utility
ell!": & RETS

HTAB WIDE - 2: & "End.":
END

REM

REM === KEYPRESS ===

REM

VTAB 23: HTAB WIDE - 17:

N> TO CONTINUE"

WAIT 16384,128. POKE
COUNT . 0
HOME RETURN

END OF LISTING 2

&

be a super ad
Use it w

POKE COUNT .0

"PRESS <RETUR

16368,0: POKE

KEY PERFECT 5.0
RUN ON
AMPER . DEMO

48C82D77 10 -
A52146F1 110 -
ClAA3157 210

BA90501E 310 -
AE9B4554 410 -
17EBF828 510 -
DO5BF56F 610 -
E49BFD29 710 -
1BAD2402 810 -

9112A29C = PROGRAM TOTAL =

6B0B
014038
015001
D054
010BFA
F231
AF69
2388
QEDB

